《2.3.2 事件的独立性》同步练习

《2.3.2 事件的独立性》同步练习

ID:36370391

大小:67.50 KB

页数:5页

时间:2019-05-10

《2.3.2 事件的独立性》同步练习_第1页
《2.3.2 事件的独立性》同步练习_第2页
《2.3.2 事件的独立性》同步练习_第3页
《2.3.2 事件的独立性》同步练习_第4页
《2.3.2 事件的独立性》同步练习_第5页
资源描述:

《《2.3.2 事件的独立性》同步练习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2-3-2《概率》同步练习2.3.2 事件的独立性1.已知A、B是相互独立事件,且P(A)=,P(B)=,则P(A)=________;P()=________.解析 P(A)=,∴P()=,P()=1-P(B)=.∵A、B相互独立,∴A与,与也相互独立,∴P(A)=P(A)·P()=,∴P()=P()·P()=.答案  2.下列事件A、B是相互独立事件的是________.①一枚硬币掷两次,事件A表示“第一次为正面”,事件B表示“第二次为反面”②袋中有2白,2黑的小球,不放回的摸两球,事件A表示“第一次摸

2、到白球”,事件B表示“第二次摸到白球”③掷一枚骰子,事件A表示“出现的点数为奇数”,事件B表示“出现的点数为偶数”④事件A表示“人能活到20岁”,事件B表示“人能活到50岁”答案 ①3.将一枚硬币连续抛掷5次,5次都出现正面朝上的概率是________.解析 每一次出现正面朝上的概率为,且它们相互独立,所以P=5=.答案 4.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为,则该队员每次罚球的命中率为________.解析 设该队员每次罚球的命中率为p(其中0<p<1),则依题意有

3、1-p2=,p2=.又0<p<1,因此有p=.答案 5.有一道数学难题,在半小时内甲能解决的概率是,乙能解决的概率为,两人试图独立地在半小时解决,则两人都未解决的概率为________.解析 都未解决的概率为×=.答案 6.设甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5.三人各向目标射击一次,求至少有一人命中目标的概率及恰有两人命中目标的概率.解 设Ak表示“第k人命中目标”,k=1,2,3.这里,A1,A2,A3独立,且P(A1)=0.7,P(A2)=0.6,P(A3)=0.5.从而,

4、至少有一人命中目标的概率为1-P(1·2·3)=1-P(1)P(2)P(3)=1-0.3×0.4×0.5=0.94.恰有两人命中目标的概率为P(A1·A2·3+A1·2·A3+1·A2·A3)=P(A1·A2·3)+P(A1·2·A3)+P(1·A2·A3)=P(A1)P(A2)P(3)+P(A1)P(2)P(A3)+P(1)P(A2)P(A3)=0.7×0.6×0.5+0.7×0.4×0.5+0.3×0.6×0.5=0.44.∴至少有一人命中目标的概率为0.94,恰有两人命中目标的概率为0.44.7.在一

5、次数学考试中,第14题和第15题为选做题.规定每位考生必须且只须在其中选做一题.设4名考生选做这两题的可能性均为.则其中甲、乙两名学生选做同一道题的概率为________.解析 设事件A表示“甲选做第14题”,事件B表示“乙选做第14题”,则甲、乙2名学生选做同一道题的事件为“AB+”,且事件A、B相互独立∴P(AB+)=P(A)P(B)+P()P()=×+×=.∴甲、乙两名学生选做同一道题的概率为.答案 8.甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人都达标的概率为_

6、_______,三人中至少有一人达标的概率为________.解析 每个人是否达标是相互独立的,“三人中至少有一人达标”的对立事件为“三人均未达标”,设三人都达标为事件A,三人中至少有一人达标为事件B,则P(A)=0.8×0.6×0.5=0.24,P(B)=1-0.2×0.4×0.5=0.96.答案 0.24 0.969.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰

7、好回答了4个问题就晋级下一轮的概率等于________.解析 此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.答案 0.12810.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为,身体关节构造合格的概率为,从中任挑一儿童,这两项至少有一项合格的概率是________(假定体型与身体关节构造合格与否相互之间没有影响).解析 两项都不合格的概率为P=×=

8、,∴至少有一项合格的概率是1-=.答案 11.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7,在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三个人该课程考核都合格的概率(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。