第21章一元二次方程阶段复

第21章一元二次方程阶段复

ID:36112736

大小:4.40 MB

页数:35页

时间:2019-05-06

第21章一元二次方程阶段复_第1页
第21章一元二次方程阶段复_第2页
第21章一元二次方程阶段复_第3页
第21章一元二次方程阶段复_第4页
第21章一元二次方程阶段复_第5页
资源描述:

《第21章一元二次方程阶段复》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、阶段复习课第二十一章主题1一元二次方程及根的有关概念【主题训练1】(2014·怀化模拟)若(a-3)+4x+5=0是关于x的一元二次方程,则a的值为()A.3B.-3C.±3D.无法确定【自主解答】选B.因为方程是关于x的一元二次方程,所以a2-7=2,且a-3≠0,解得a=-3.【主题升华】一元二次方程的有关定义及根1.一元二次方程满足的四个条件.A整式方程B只含有一个未知数C未知数的最高次数是2D二次项系数不为02.一元二次方程的项的系数包括它前面的符号,一次项的系数和常数项可以为0.3.根能使方程左右两边相等,已知一个根,可代入确定方程中的字母系数

2、.1.(2014·武威凉州模拟)下列方程中,一定是一元二次方程的是()A.ax2+bx+c=0B.x2=0C.3x2+2y-=0D.x2+-5=0【解析】选B.A中的二次项系数缺少不等于0的条件,C中含有两个未知数,D中的方程不是整式方程.2.(2013·牡丹江中考)若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是()A.2018B.2008C.2014D.2012【解析】选A.∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a·12+b·1+5=0,∴a+b=-5,∴2013-a-b=2013-(a+b)

3、=2013-(-5)=2018.3.(2014·启东模拟)一元二次方程2x2-3x-2=0的二次项系数是,一次项系数是,常数项是.【解析】项和系数都包括它前面的符号,所以二次项系数是2,一次项系数是-3,常数项是-2.答案:2-3-2主题2一元二次方程的解法【主题训练2】(2013·义乌中考)解方程x2-2x-1=0.【自主解答】移项得:x2-2x=1,配方得:x2-2x+1=2,即(x-1)2=2,开方得:x-1=±,x=1±,所以x1=1+,x2=1-.【备选例题】(2014·齐齐哈尔模拟)方程a2-4a-7=0的解是.【解析】a2-4a-7=0,移

4、项得:a2-4a=7,配方得:a2-4a+4=7+4,(a-2)2=11,两边直接开平方得:a-2=±,a=2±.答案:a1=2+,a2=2-【主题升华】一元二次方程解法选择若没有特别说明,解法选择的基本顺序是直接开平方法→因式分解法→公式法.配方法使用较少,除非题目有明确要求才使用.1.(2013·鞍山中考)已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根【解析】选C.∵(x-1)2=b中b<0,∴没有实数根.2.(2013·吉林中考)若将方程x2+6x=7化为

5、(x+m)2=16,则m=.【解析】在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,配方,得(x+3)2=16.所以,m=3.答案:33.(2012·永州中考)解方程:(x-3)2-9=0.【解析】移项得:(x-3)2=9,两边开平方得x-3=±3,所以x=3±3,解得:x1=6,x2=0.主题3根的判别式及根与系数的关系【主题训练3】(2013·广州中考)若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【自主解答】选

6、A.Δ=16+4k=(5k+20),∵5k+20<0,∴Δ<0,∴没有实数根.【主题升华】根的判别式的应用1.根的判别式的作用:不解方程判断方程有无实数根.2.一元二次方程的根的情况取决于Δ=b2-4ac的符号.(1)当Δ=b2-4ac>0时,方程有两个不相等的实数根.(2)当Δ=b2-4ac=0时,方程有两个相等的实数根.(3)当Δ=b2-4ac<0时,方程没有实数根.(4)对于以上三种情况,反之也成立.【知识拓展】根与系数关系的应用(1)已知一根求另一个根.(2)求含根的代数式的值.①两根的倒数和:②两根的平方和:x12+x22=(x1+x2)2-2

7、x1x2;③两根的差:x1-x2=(x1>x2).1.(2013·福州中考)下列一元二次方程有两个相等实数根的是()A.x2+3=0B.x2+2x=0C.(x+1)2=0D.(x+3)(x-1)=0【解析】选C.选项一元二次方程的解A项方程可化为x2=-3,方程无解B项可化为x(x+2)=0,方程的解为x1=0,x2=-2C项方程的解为x1=x2=-1D项方程的解为x1=1,x2=-32.(2013·珠海中考)已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0,下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无

8、实数解D.①②都无实数解【解析】选B.一元二次方程①的判别式的值为Δ=b2-4a

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。