参数方程与极坐标“考点”面面看 选修4-4

参数方程与极坐标“考点”面面看 选修4-4

ID:35670256

大小:796.98 KB

页数:6页

时间:2019-04-09

参数方程与极坐标“考点”面面看 选修4-4_第1页
参数方程与极坐标“考点”面面看 选修4-4_第2页
参数方程与极坐标“考点”面面看 选修4-4_第3页
参数方程与极坐标“考点”面面看 选修4-4_第4页
参数方程与极坐标“考点”面面看 选修4-4_第5页
资源描述:

《参数方程与极坐标“考点”面面看 选修4-4》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、参数方程与极坐标“考点”面面看“参数方程与极坐标”主要内容是参数方程和普通方程的互化,极坐标系与普通坐标系的互化,参数方程和极坐标的简单应用三块,下面针对这三块内容进行透析:一、参数方程与普通方程的互化化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数,先确定一个关系(或,再代入普通方程,求得另一关系(或).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标)例1、方程表示的曲线是()A.双曲线B.双曲线的上支C.

2、双曲线的下支D.圆分析:把参数方程化为我们熟悉的普通方程,再去判断它表示的曲线类型是这类问题的破解策略.解析:注意到t与互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含的项,即有,又注意到,可见与以上参数方程等价的普通方程为.显然它表示焦点在轴上,以原点为中心的双曲线的上支,选B.点评:这是一类将参数方程化为普通方程的检验问题,转化的关键是要注意变量范围的一致性.趁热打铁1:与普通方程等价的参数方程是()(为能数)解析:所谓与方程等价,是指若把参数方程化为普通方程后不但形式一致而且的变化范围也对应相同,按照这一标准逐一验证即可破解.对于A化

3、为普通方程为;对于B化为普通方程为;对于C化为普通方程为;对于D化为普通方程为.而已知方程为显然与之等价的为B.例2、设P是椭圆上的一个动点,则的最大值是,最小值为.分析:注意到变量的几何意义,故研究二元函数的最值时,可转化为几何问题.若设,则方程表示一组直线,(对于取不同的值,方程表示不同的直线),显然既满足,又满足,故点是方程组的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一元二次方程的判别式问题.解析:令,对于既满足,又满足,故点是方程组的公共解,依题意得,由,解得:,所以的最大值为,最小值为.点评:对于以上的问题,有时由于研究二元函

4、数有困难,也常采用消元,但由满足的方程来表示出或时会出现无理式,这对进一步求函数最值依然不够简洁,但若通过三角函数换元,则可实现这一途径.即,因此可通过转化为的一元函数.以上二个思路都叫“参数法”.趁热打铁2:已知线段,直线l垂直平分,交于点O,在属于l并且以O为起点的同一射线上取两点,使,求直线BP与直线的交点M的轨迹方程.解析:以O为原点,BB’为y轴,为轴建立直角坐标系,则,,设,则由,得,则直线BP的方程为;直线和方程为;,因此点M的轨迹为长轴长为6,短轴长为4的椭圆(除B,).二、极坐标与直角坐标的互化利用两种坐标的互化,可以把不熟悉的问题转化为

5、熟悉的问题,这二者互化的前提条件是(1)极点与原点重合;(2)极轴与轴正方向重合;(3)取相同的单位长度.设点P的直角坐标为,它的极坐标为,则;若把直角坐标化为极坐标,求极角时,应注意判断点P所在的象限(即角的终边的位置),以便正确地求出角.例3、极坐标方程表示的曲线是()A.圆B.椭圆C.双曲线的一支D.抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由,化为直角坐标系方程为,化简得.显然该方程表示抛物线,故选D.点评:若直接由所给方程是很难断定它表示何种曲线,因此通常要把极坐标方程化为直角坐标方程,加以研究.趁热打铁3:已知直线的极坐

6、标方程为,则极点到该直线的距离是解析:极点的直角坐标为,对于方程,可得化为直角坐标方程为,因此点到直线的距离为.例4、极坐标方程转化成直角坐标方程为()A.B.C.D.分析:极坐标化为直解坐标只须结合转化公式进行化解.解析:,因此选C.点评:此题在转化过程中要注意不要失解,本题若成为填空题,则更要谨防漏解.趁热打铁4:点的直角坐标是,则点的极坐标为()A.B.C.D.解析:都是极坐标,因此选C.三、参数方程与极坐标的简单应用参数方程和极坐标的简单应用主要是:求几何图形的面积、曲线的轨迹方程或研究某些函数的最值问题.例5、已知的三个顶点的极坐标分别为,判断三

7、角形ABC的三角形的形状,并计算其面积.分析:判断△ABC的形状,就需要计算三角形的边长或角,在本题中计算边长较为容易,不妨先计算边长.解析:如图,对于,又,由余弦定理得:,,,,,,所以AB边上的高,趁热打铁5:如图,点A在直线x=5上移动,等腰△OPA的顶角∠OPA为120°(O,P,A按顺时针方向排列),求点P的轨迹方程.解析:取O为极点,正半轴为极轴,建立极坐标系,则直线的极坐标方程为,设A(,),P,因点A在直线上,为等腰三角形,且,以及,把<2>代入<1>,得点P的轨迹的极坐标方程为:.即时训练一、选择题(8题)1.已知点M的极坐标为,下列所给

8、出的四个坐标中不能表示点M的坐标是()A.B.C.D.2.若直线的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。