欢迎来到天天文库
浏览记录
ID:35358777
大小:66.50 KB
页数:6页
时间:2019-03-23
《初二数学第14章一次函数典型例题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第14章一次函数典型例题一次函数与方案设计问题一次函数是最基本的函数,它与一次方程、一次不等式有密切联系,在实际生活中有广泛的应用。例如,利用一次函数等有关知识可以在某些经济活动屮作出具体的方案决策。近几年來一些省市的屮考或竞赛试题中出现了这方面的应用题,这些试题新颖灵活,具有较强的时代气息和很强的选拔功能。1.生产方案的设计例1(98年河北)某工厂现有甲种原料360千克,乙种原料290T克,计划利用这两种原料生产A、B两种产品,共50件。已知生产一件A种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料
2、4千克、乙种原料10千克,可获利润1200元。(1)耍求安排A、B两种产品的生产件数,有哪儿种方案?请你设计出来;(2)生产A、B两种产品获总利润是y(元),其中一种的生产件数是x,试写出y与x之间的函数关系式,并利用函数的性质说叨(1)中的哪种生产方案获总利润最大?最大利润是多少?解(1)设安排生产A种产品x件,则生产B种产品是(50-x)件。由题意得J9x+4(50-切5360(1)[3x+10(50-%)<290(2)解不等式组得30WxW32。因为x是整数,所以x只取30、31、32,相应的(50-x)的值是20、19、18。所以,生
3、产的方案有三种,即第一种生产方案:生产A种产品30件,B种产品20件;第二种生产方案:生产A种产品31件,B种产品19件;第三种生产方案:生产A种产晶32件,B种产品18件。(2)设生产A种产品的件数是x,则生产B种产品的件数是50-xo市题意得y=700x+1200(50-x)=-500x+6000o(其中x只能取30,31,32。)因为-500<0,所以此一次函数y随x的增大而减小,所以当x二30时,y的值最大。因此,按第一种生产方案安排生产,获总利润最大,最大利润是:-500・3+6000二4500(元)。本题是利用不等式组的知识,得到
4、几种生产方案的设计,再利用一次函数性质得出最佳设计方案问题。1.调运方案设计例2北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是4白元/台、8白元/台,从上海运往汉口、重庆的运费分别是3白元/台、5白元/台。求:(1)若总运费为8400元,上海运往汉口应是多少台?(2)若要求总运费不超过8200元,共有几种调运方案?(3)求出总运费最低的调运方案,最低总运费是多少元?解设上海厂运往汉口x台,那么上海运往重庆有(4-x)台,北京厂运往汉口
5、(6-x)台,北京厂运往重庆(4+x)台,则总运费W关于x的一次函数关系式:W二3x+4(6-x)+5(4-x)+8(4+x)=76+2x。(1)当W=84(百元)时,则有76+2x=84,解得x=4。若总运费为8400元,上海厂应运往汉口4台。fO6、最小值是W=76(H元),即最低总运费是7600元。此时的调运方案是:上海厂的4台全部运往重庆;北京厂运往汉口6台,运往重庆4台。本题运用了函数思想得出了总运费W与变量x的一般关系,再根据要求运用方程思想、不等式等知识解决了调运方案的设计问题。并求出了最低运费价。2.营方案的设计例3某新建商场设有白货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元。由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表1,每1力元营业额所得利润情况7、如表2o表1表2商品每1万元营业额所需人数商品每1万元营业额所得利润白货类5白货类0.3万元服装类4服装类0.5万元家电类2家电类0.2万元商场将计划n营业额分配给三个经营部,设分配给rr货部、服装部和家电部的营业额分别为x(力元)、y(万元)、z(万元)(x,y,z都是整数)。(1)请用含X的代数式分别表示y和z;(2)若商场预计每日的总利润为C(万元),且C满足19WCW19.7,问这个商场应怎样分配日营业额给三个经营部?各部应分别安排多少名售货员?(1)山题意得x+y+z=605x+4y+2?=190“35—*,“25+寺(2)C=0.8、3x+0.5y+0.2z=-0.35x+22.5。因为19WCW19.7,所以9W-0.35x+22・5W19.7,解得8WxW10。因为x,y,z是正整,且x为偶
6、最小值是W=76(H元),即最低总运费是7600元。此时的调运方案是:上海厂的4台全部运往重庆;北京厂运往汉口6台,运往重庆4台。本题运用了函数思想得出了总运费W与变量x的一般关系,再根据要求运用方程思想、不等式等知识解决了调运方案的设计问题。并求出了最低运费价。2.营方案的设计例3某新建商场设有白货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元。由于营业性质不同,分配到三个部的售货员的人数也就不等,根据经验,各类商品每1万元营业额所需售货员人数如表1,每1力元营业额所得利润情况
7、如表2o表1表2商品每1万元营业额所需人数商品每1万元营业额所得利润白货类5白货类0.3万元服装类4服装类0.5万元家电类2家电类0.2万元商场将计划n营业额分配给三个经营部,设分配给rr货部、服装部和家电部的营业额分别为x(力元)、y(万元)、z(万元)(x,y,z都是整数)。(1)请用含X的代数式分别表示y和z;(2)若商场预计每日的总利润为C(万元),且C满足19WCW19.7,问这个商场应怎样分配日营业额给三个经营部?各部应分别安排多少名售货员?(1)山题意得x+y+z=605x+4y+2?=190“35—*,“25+寺(2)C=0.
8、3x+0.5y+0.2z=-0.35x+22.5。因为19WCW19.7,所以9W-0.35x+22・5W19.7,解得8WxW10。因为x,y,z是正整,且x为偶
此文档下载收益归作者所有