最小二乘法原理和曲线拟合

最小二乘法原理和曲线拟合

ID:34775193

大小:192.18 KB

页数:4页

时间:2019-03-10

最小二乘法原理和曲线拟合_第1页
最小二乘法原理和曲线拟合_第2页
最小二乘法原理和曲线拟合_第3页
最小二乘法原理和曲线拟合_第4页
资源描述:

《最小二乘法原理和曲线拟合》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、最小二乘法的基本原理和多项式拟合一最小二乘法的基本原理从整体上考虑近似函数同所给数据点(i=0,1,…,m)误差(i=0,1,…,m)的大小,常用的方法有以下三种:一是误差(i=0,1,…,m)绝对值的最大值,即误差向量的∞—范数;二是误差绝对值的和,即误差向量r的1—范数;三是误差平方和的算术平方根,即误差向量r的2—范数;前两种方法简单、自然,但不便于微分运算,后一种方法相当于考虑2—范数的平方,因此在曲线拟合中常采用误差平方和来度量误差(i=0,1,…,m)的整体大小。数据拟合的具体作法是:对给定数据(i=0,1,…,m),在取定的函数类中,求,使误差(i=0

2、,1,…,m)的平方和最小,即=从几何意义上讲,就是寻求与给定点(i=0,1,…,m)的距离平方和为最小的曲线(图6-1)。函数称为拟合函数或最小二乘解,求拟合函数的方法称为曲线拟合的最小二乘法。在曲线拟合中,函数类可有不同的选取方法.6—1二多项式拟合假设给定数据点(i=0,1,…,m),为所有次数不超过的多项式构成的函数类,现求一,使得(1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的称为最小二乘拟合多项式。特别地,当n=1时,称为线性拟合或直线拟合。显然为的多元函数,因此上述问题即为求的极值问题。由多元函数求极值的必要条件,得(2)即(3)(3)

3、是关于的线性方程组,用矩阵表示为(4)式(3)或式(4)称为正规方程组或法方程组。可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。从式(4)中解出(k=0,1,…,n),从而可得多项式(5)可以证明,式(5)中的满足式(1),即为所求的拟合多项式。我们把称为最小二乘拟合多项式的平方误差,记作由式(2)可得(6)多项式拟合的一般方法可归纳为以下几步:(1)由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;(2)列表计算和;(3)写出正规方程组,求出;(4)写出拟合多项式。在实际应用中,或;当时所得的拟合多项式就是拉格朗日或

4、牛顿插值多项式。例1测得铜导线在温度(℃)时的电阻如表6-1,求电阻R与温度T的近似函数关系。i0123456(℃)19.125.030.136.040.045.150.076.3077.879.2580.882.3583.985.1解画出散点图(图6-2),可见测得的数据接近一条直线,故取n=1,拟合函数为列表如下i019.176.30364.811457.330125.077.80625.001945.000230.179.25906.012385.425336.080.801296.002908.800440.082.351600.003294.000545.1

5、83.902034.013783.890650.085.102500.004255.000245.3565.59325.8320029.445正规方程组为解方程组得故得R与T的拟合直线为利用上述关系式,可以预测不同温度时铜导线的电阻值。例如,由R=0得T=-242.5,即预测温度T=-242.5℃时,铜导线无电阻。6-2例2    已知实验数据如下表  i01234567813456789101054211234试用最小二乘法求它的二次拟合多项式。解设拟合曲线方程为列表如下I0110111101013592781154524416642561664352

6、251256251050461362161296636571493432401749682645124096161287938172965612724381041001000100004040053323813017253171471025得正规方程组解得故拟合多项式为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。