2、f(xdx)=2xedx=∫0X∫021(2)E(3X−1)=3EX−=12∞∞∞x2−2x1(3)EXY(,)=∫∫xyfxydxdy(,)=∫∫xyedydx=。−∞−∞00x410X∼U(8,9),Y∼U(8,9)991EX−Y=∫∫x−yfxydxdy(,)=(小时)883即先到的人等待的平均时间为20分钟。−λt⎧λe,t>0,12ft()=⎨⎩0,t≤0.−8λ8−λt∞−λt1−eET=∫teλdt+∫8λedt=。08λ211CCC1411414(1)a=1时,p(ξ=0)=,p(ξ=1)=n2n2CC151511CC24114Eξ==≠n2C15315211
3、2CCCC15−aa15−aaa≥2时,p(ξ=0)=,p(ξ=1)=,p(ξ=2)=222222CCC151515112CCC2aa15−aaEξ=×1+×2=222CC1515154由Eξ=得,a=10。23455463CCCCCC105105105(2)p(ξ=4)=,p(ξ=5)=,p(ξ=6)=,999999CCC151515728190CCCCCC105105105p(ξ9=7)=9,p(ξ9=8)=9,p(ξ9=4)=9CCC151515455463728190CCCCCCCCCCCC105105105105105105Eξ=×4+×5+×6+×7+×8+×9=
4、6。9999999CCCCCC15151515151516记Y为进入购物中心的人数,X为购买冷饮的人数,则∞kkmk−pX(X=k)=∑pYY(=mCp)m(1−p)mk=∞m−λλekkmk−=∑Cpm(1−p)mk=m!∞m−λλekmk−=∑p(1−p)mk=(mkk−)!!k−λk∞mλepλm=∑(1−p)k!m=0m!k−λp∞m(λp)e[λ(1−p)]−λ(1−p)=∑ek!m=0m!k−λp(λp)e=k!故购买冷饮的顾客人数服从参数为λp的泊松分布,易知期望为λp。2211222C15−a⎛4⎞CCa15−a⎛4⎞Ca⎛4⎞2618D(ξ)=⎜0−⎟+⎜1
5、−⎟+⎜2−⎟=.2222C15⎝3⎠C15⎝3⎠C15⎝3⎠63∞20EX=∫xfxdx()=0,−∞21∞2−xDX=EX=∫xedx=22−∞1∞−xEX=∫xedx=12−∞221∞2−xDX=EX−(EX)=∫xedx−=112−∞122pX(=0)=pX(=1)=pY(=0)=pY(=1)=2pX(+Y≥1)=pX(=0,Y=1)+pX(=1,Y=1)+pX(=1,Y=0)(1)=pX(=0)pY(=1)+pX(=1)pY(=1)+pX(=1)pY(=0)3=4Y01(2)EX(⋅−(1))=⋅−0(1)pX(=0)pY(=0)+⋅−0(1)pX(=0)pY(=1
6、)+011⋅−(1)pX(=1)pY(=0)+⋅−1(1)pX(=1)pY(=1)=02YYY2DX(⋅−(1))=EX(⋅−(1))−[EX(⋅−(1))]2Y=EX(⋅−(1))0212=[0⋅−(1])pX(=0)pY(=0)+[0⋅−(1])pX(=0)pY(=1)+0212[1⋅−(1])pX(=1)pY(=0)+⋅−[1(1])pX(=1)pY(=1)1=2−2x−4y⎧2e,x>0,⎧4e,y>0,24fX(x)=⎨fY(y)=⎨⎩0,x≤0.⎩0,y≤0.−2x−4y⎧1−e,x>0,⎧1−e,y>0,FX(x)=⎨FY(y)=⎨⎩0,x≤0.⎩0,y≤0.(
7、1)Z=min{XY,}−6z⎧1−e,z>0,FZ(z)=pZ(≤z)=−1⎡⎣(1−FX(z))(1−FzY())⎤⎦=⎨⎩0,z≤0.11DZ故Z服从参数为λ=6的指数分布,故EZ=,DZ=。故CvZ()==1。636EZ(2)Z=max{XY,}⎧⎪−−2z−−4z>(1e)(1e),z0,FZ(z)=pZ(≤z)=FX(zFz)Y()=⎨⎪⎩0,z≤0.∞7EZ=∫0zdFZ(z)=,1222∞24933DZ=EZ−(EZ)=∫zdFZ(z)−=,0144144DZ33故CvZ()==。EZ7