两类带有非局部扩散项的种群模型的行波解

两类带有非局部扩散项的种群模型的行波解

ID:34317224

大小:668.19 KB

页数:51页

时间:2019-03-05

上传者:beiai1218
两类带有非局部扩散项的种群模型的行波解_第1页
两类带有非局部扩散项的种群模型的行波解_第2页
两类带有非局部扩散项的种群模型的行波解_第3页
两类带有非局部扩散项的种群模型的行波解_第4页
两类带有非局部扩散项的种群模型的行波解_第5页
资源描述:

《两类带有非局部扩散项的种群模型的行波解》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

20183a¬ÆØ©üa‘kšÛÜ*Ñ‘«+.1Å)Šö6¶“r•“4?JÇƉ;’A^êÆïÄ••‡©•§†ÄåXÚüêƉÆÆÆSc•2015c9–2018c6˜lc8 ìÜŒÆ20183a¬ÆØ©üa‘kšÛÜ*Ñ‘«+.1Å)Šö6¶“r•“4?JÇƉ;’A^êÆïÄ••‡©•§†ÄåXÚüêƉÆÆÆSc•2015c9–2018c6"˜lc8 ThesisforMaster'sdegree,ShanxiUniversity,2018TravelingWavesforTwoTypesofPopulationModelswithNonlocalDi usionStudentNameZhimeiWangSupervisorProf.GuirongLiuMajorAppliedMathematicsFieldofResearchDi erentialEquationsandDynamicalSystemsDepartmentSchoolofMathematicalSciencesResearchDuration2015.09-2018.06June,2018 8¹¥©Á‡...............................................................................iAbstract...............................................................................i1˜ÙXØ...........................................................................11Ù‘kšÛÜ*Ñ‘Úž¢«+.Åc)..............................32.1Úó...........................................................................32.2Åc)•35..............................................................42.3Åc)ìC5.............................................................112.4Åc)Ø•35...........................................................192.5ž¢Ú=zÇé•1Å„ÝK•.......................................191nÙ‘kšÛÜ*Ñ‘Úž˜¢D/¾.1Å)......................213.1Úó..........................................................................213.21Å)•35.............................................................22o(†Ð"...........................................................................32ë•©z.............................................................................33ïĤJ.............................................................................36—..................................................................................37‡<{¹9éX•ª.................................................................38«ìÖ................................................................................39ÆØ©¦^Ç(²...............................................................40i ContentsAbstractinChinese..................................................................iAbstract...............................................................................iChapter1Preface...................................................................1Chapter2Travelingwavefrontforapopulationmodelwithdelayandnonlocaldi usion...............................................................................32.1Introduction...................................................................32.2Existenceoftravelingwavefront...............................................42.3Asymptoticbehavioroftravelingwavefront...................................112.4Nonexistenceoftravelingwavefront..........................................192.5Thee ectsofdelayandtransferratesonminimumtravelingwavespeed......20Chapter3Travelingwaveforaninfectiousdiseasemodelwithspatio-temporaldelayandnonlocaldi usion.......................................................213.1Introduction..................................................................213.2Existenceoftravelingwaves..................................................22Thesummaryandoutlook........................................................32References...........................................................................33Researchachievement..............................................................36Acknowledgements..................................................................37Personalpro les.....................................................................38Letterofcommitment..............................................................39Authorizationstatement...........................................................40iii ¥©Á‡¥©Á‡©ïÄüa‘kšÛÜ*Ñ‘«+.1Å).1˜Ù,0‡A*Ñ•§ïĵ9®²¤J,•[ãISuÐı9©̇óŠ.1Ù,ïĹkšÛÜ*Ñ‘Úž¢«+.8>>@tu(x;t)=D[Ju(x;t)u(x;t)]+f(u(x;t);u(x;t1))<1u(x;t))+2v(x;t2);>>:@tv(x;t)=1u(x;t3)2v(x;t);RÙ¥Ju(x;t)=J(xy)u(y;t)dy,u(x;t)•?u¹ÄG<•—Ý;v(x;t)•?Ru·ŽG<•—Ý,1,2L«¹ÄGÚ·ŽGƒm=zÇ,f(u;u)•2)¼ê,D>0´*ÑXê,1;2;3•~ê.Ù$^þe)•{(ÜSchauderØÄ:½ny²,ccž,TXÚ•3Åc).ÏLLaplaceC†,(ÜIkeharaÚnXÚÅc)31?ìC5,¿y²00ž,c'u1üN4O;@2f(0;0)=0ž,c†1Ã'.c'u2;3; 1üN4O.c'u2üN4~.1nÙ,ïĹkž˜¢ÚšÛÜ*Ñ‘D/¾.8>@tu(x;t)=D[Ju(x;t)u(x;t)]+f(u(x;t);u(x;t1))<1u(x;t))+2v(x;t2);>>:@tv(x;t)=1u(x;t3)2v(x;t);RJu(x;t)=J(xy)u(y;t)dy,u(x;t)andv(x;t)representactivityphaseandstationaryRphaseofpopulationdensity,1>0and2>0areconversionratesbetweenthetwophases,f(u;u)isreproductivefunction,D>0isdi usioncoecient,1;2;3aredelays.Byusing xedpointtheoremandupper-lowersolutionmethod,weprovethatthepopulationsystemhastravelingwavefrontwhencc.ThroughLaplacetransformandIkeharalemma,weprovetheasymptoticbehavioroftravelingwavefrontin1.Itisprovedthatwhen00,cisanmonotoneincreasingfunctionon1;when@2f(0;0)=0,cisindependentof1.cisamonotoneincreasingfunctionon2;3,and1.cisanmonotonedecreasingfunctionon2.Chapter3studyiestheinfectiousdiseasemodelwithspatio-temporaldelayandnonlocaldi usion80•1Å„Ý.Zeldovich;FrankKamenetskii[6]š‚5‡A*ÑXÚ1Å)•35,•½5.Aronson[7],ÚWeinberger[8]ïÄV•œ/,ùpf(u)=u(1u)(u)(2(0;1)).'uFisherïÄ,ØØf(u)´ü•„´V•,ÑUÑe(Ø:ccž,‡A*ÑXÚ•31Å);00;0w(x;t)1:Ù¥>0•~ê,ef÷v˜½^‡,K:0ccž,XÚ•3•˜üN1Å),…(1)=0,(+1)=1.Š•šÛÜž¢;.,©[10]•ÄZ@u(x;t)+1=du(x;t)+fu(x;t);h(xy)u(y;t)dy:@t13·^‡e,Œ±†©[9]aq(Ø.5¿Laplace½Â*ÑL«‡N3˜mþÛÜŠ^,‡N£Ä´‘Å,Ï•·‚ïá.I‡•Äy¢µÚ)ÔÆ¿Â,¤±Lee[17]JÑ^È©½1 üa‘kšÛÜ*Ñ‘«+.1Å)šÛÜ*Ñ,©[13,18]ïÄZu(x;t)t=J(xy)u(t;y)dyu(t;x)+f(u(t;x)):RPanXÚ•31Å).šÛÜ*Ñ„Œ±^5£ãD/¾Ú«+*Ñ,Œë•©z[1921].镘ãžm±5,y²1Å)•35˜†´‡A*Ñ•§ïÄ•‡‘K,y²‡A*Ñ•§1Å)•35kõ«•{,~X:ØÄ:•{[22;23],ÝnØ•{[24],ƒ²¡©Û{Ú•ŒŠn[9],ÛÉÄnØ,üNS“{.ÄuþãïÄyG,©òïÄüa‘kšÛÜ*Ñ«+.1Å).2 1Ù‘kšÛÜ*Ñ‘Úž¢«+.Åc)x2.1ÚóCAc5,¹k·Žã‡A*ÑXÚ®²Ñy,•²;.´HadelerÚLewis[25]ïá8<@tu(x;t)=Duxx(x;t)+f(u(x;t))1u(x;t)+2v(x;t);(2.1.1):@tv(x;t)=1u(x;t)2v(x;t):u(x;t);v(x;t)©O•<•?u¹ÄGÚ·ŽGž—Ý,1Ú2L«¹ÄGÚ·ŽGƒm=zÇ,f(u;u)•2)¼ê,D>0.du‡NÈzÏI‡˜ãžm,Ïd,•Ä‘kž¢‡A*ÑXÚ´k¿Â.Hadeler[26]Úe.8<@tu(x;t)=Duxx(x;t)+f(u(x;t);u(x;t))1u(x;t)+2v(x;t);(2.1.2):@tv(x;t)=1u(x;t)2v(x;t);Ù¥f(u(x;t);u(x;t))•2)¼ê,>0.XZhou[22]ïÄšÛÜ*ÑXÚ8>>@tu(x;t)=D[Ju(x;t)u(x;t)]+f(u(x;t);u(x;t))<1u(x;t)+2v(x;t);(2.1.3)>>:@tv(x;t)=1u(x;t)2v(x;t);RÙ¥Ju(x;t)=RJ(xy)u(y;t)dy,ZhouÏLØÄ:½nÚþe)•{:ccž,TXÚ•3Åc);0>@tu(x;t)=D[Ju(x;t)u(x;t)]+f(u(x;t);u(x;t1))<1u(x;t))+2v(x;t2);(2.1.4)>>:@tv(x;t)=1u(x;t3)2v(x;t);RÙ¥Ju(x;t)=RJ(xy)u(y;t)dy,1Ú2L«üGƒm=zÇ,f(u;u)•2)¼ê,D>0,1;2;3•~ê.‰Ñe^‡RR(H1)J(x)0;J(x)=J(x);J(x)dx=1;…é?¿>0,J(x)exdx<+1:RR(H2)f(0;0)=f(K;K)=0;f2C2([0;K]2;R),é?¿u2(0;K),f(u;u)>0,…é?¿(u;v)2[0;K]2,@2f(u;v)0,Ù¥K•~ê.3 üa‘kšÛÜ*Ñ‘«+.1Å)(H3)é?¿(u;v)2[0;K]2,@1f(0;0)u+@2f(0;0)vf(u;v),@1f(K;K)+@2f(K;K)<0.1!,ÏLSchauderØÄ:½nÚþe)•{y²,ccž,XÚ•3Åc).1n!,ÏLLaplaceC†,(ÜIkeharaÚnXÚÅc)31?ìC5.1o!y²00•1Å„Ý.U(),V()üNž,(U;V)•(2.1.4)Åc).ò(u(x;t);v(x;t))=(U();V())“(2.1.4),Œ8<0cU()=D[JU()U()]+f(U();U(c1))1U()+2V(c2);(2.2.1):cV0()=1U(c3)2V();Ù>.^‡•(U(1);V(1))=(0;0);(U(1);V(1))=(K;K0):(2.2.2)d(2.2.1)1‡•§ÚV(1)=0,ŒZ12(s)V()=U(sc3)ecds;(2.2.3)c1?kZc212(c2s)V(c2)=U(sc3)ecds:(2.2.4)c1U(1)=0;U(1)=Kž,d(2.2.4)Œ•V(1)=0;V(1)=K0.ò(2.2.4)“(2.2.1)1˜‡•§,kcU0()=D[JU()U()]+f(U();U(c))U()11Zc2122(c2s)+U(sc3)ecds;(2.2.5)c1Ù>.^‡•U(1)=0;U(1)=K:(2.2.6)N´eÚn¤á.4 1Ù‘kšÛÜ*Ñ‘Úž¢«+.Åc)Ún2.2.1.eU()2C1(R;[0;K])´(2.2.5)†(2.2.6)üNØ~),K(U(x+ct);V(x+ct))´XÚ(2.1.4)üNØ~Åc),Ù¥V()÷v(2.2.3).Ïd,•y²XÚ(2.1.4)•3Åc),I•Ä(2.2.5)†(2.2.6)üNØ~)•35.e¡|^þe)•{ÚSchauderØÄ:½ny²(2.2.5)†(2.2.6))•35.½ÂŽfF:C(R;[0;K])!C(R;R)Z1(s)(F)()=(H)(s)ecds;(2.2.7)c1ùp >maxfj@1f(u;v)jg+D+1,±9H•(u;v)2[0;K]2(H)()=DJ()+(D1)()+f(();(c1))Zc2122(c2s)+(sc3)ecds:(2.2.8)c1´yF÷v:c(F)0()=(F)()+(H)().Ún2.2.2.(H1)(H3)¤á.(i)e1,22C(R;[0;K]),…1()2();2R,K(H1)()(H2)(),(F1)()(F2)(),2R.(ii)e2C(R;[0;K]),…'uüNØ~,KH,F'u•üNØ~.y².(i)d(H2)Œ•,é?¿2R,Ñkf(1();1(c1))f(2();2(c1))+(D1)(1()2())f(1();2(c1))f(2();2(c1))+(D1)(1()2())(D1+maxfj@1f(u;v)jg)(1()2())(u;v)2[0;K]20†Z1J1()J2()=J(y)(1(y)2(y))ds0:1dŽfH½Â,k(H1)()(H2)();2R.?˜Ú(F1)()(F2)();2R.(ii)é?¿2C(R;[0;K]),Ï•'uüNØ~,?1;22R…1<2,d@2f(u;v)0Œ•,f((1);(1c1))f((2);(2c1))f((1);(2c1))f((2);(2c1))0:5 üa‘kšÛÜ*Ñ‘«+.1Å)Rc22(c2s)-g()=1(sc3)ecds,lZc20222(c2+s)g()=ec(sc3)ecds+(c2c3)c1Zc2222(c2+s)(c2c3)ececds+(c2c3)c1=(c2c3)+(c2c3)=0:Ïd,g()'uüNØ~,=g(1)g(2).u´Œ(H)(1)(H)(2).d0(H)() K.lé?¿1;22R,1<2ž,ZZ121(1s)(2s)(F)(1)(F)(2)=(H)(s)ecds(H)(s)ecdsc11ZZ12 K(1s)(2s)(2s)[ecec]ds+ecdsc11=0:Ïd,Ún2.2.2¤á.-~ê2(0;).½ÂcB(R;R)=f2C(R;R):supj()jejj<1g;2R…jj=supfj()jejjg,w,(B(R;R);jj)´˜‡Banach˜m.2R½Â2.1£þ!e)¤e˜é¼ê;2C(R;[0;K])A??Œ‡…÷v8>>0>>c()D[J()()]+f(();(c1))1()>>Zc2>>122(c2s)<+(sc3)ecds;c1(2.2.9)>>c0()D[J()()]+f(();(c))()>>11>>Zc2>>122(c2s):+(sc3)ecds;c1K¡;•(2.2.5)þ,e).25¿é?¿c0,2Cnfg,(2.2.5)3U()=0?‚5zXÚéAcA•§•Z(c;)=c+DeyJ(y)dy1+@f(0;0)11Rc112c(2+3)+@2f(0;0)e+e:c+26 1Ù‘kšÛÜ*Ñ‘Úž¢«+.Åc)Ún2.2.3.e(H1)(H3)¤á,K•3~ê;c,¦(c;)=0,…e(Ø(i)-(ii)¤á.(i)ecc,K(c;)=0kü‡¢Š1(c);2(c),÷v1(c)2(c),…01(c)<0,02(c)>0.2(1(c);2(c))ž,(c;)<0.2Rn(1(c);2(c))ž,(c;)>0.(ii)e00,Ñk(c;)>0.y².Šâ(H),é?¿c0,k(c;0)=@f(0;0)+@f(0;0)2f(K;K)>0.212K22dR1eyJ(y)dy=R1(ey+ey)J(y)dyÚey+ey2y2>0,k10Z+1(c;)c+D2y2J(y)dy1+@f(0;0)+@f(0;0)ec112012c(2+3)1+e:c+2?˜ÚŒlim(c;)=+1;lim(c;)=1!+1c!+1±9Z+1(0;)=D(ey+ey2)J(y)dy+@f(0;0)+@f(0;0)>0:120é?¿>0,@(c;)c1 12(2+3)c(2+3) 12c(2+3)=1@2f(0;0)ee2e@cc+2(c+2)<0:é?¿c>0,Z@2(c;)2y2c12=DyeJ(y)dy+(c1)@2f(0;0)e@R2c2122c212(2+3)c212(2+3)2c(2+3)+++e(c+2)3(c+2)2c+2>0:½Âc:=supfc>0j(c;)>0;2Rg,´yc2(0;1).(c;)=0k•˜),P•.?(c;)=0,@(c;)j=0.l,Ún2.2.3¤á.@(c;)2(c)Ún2.2.4.e(H1)(H3)¤á,Ké?¿c>c,2(1;minf2;1(c)g),•3¿©Œ~êq,¦()=minfK;e1(c)+qe 1(c)g;()=maxf0;e1(c)qe 1(c)g;2R•(2.2.5)þ,e).7 üa‘kšÛÜ*Ñ‘«+.1Å)y².Äky²()•(2.2.5)þ).@2f(0;0)0ž,•32R÷ve1(c)+qe 1(c)=K:>ž,()=K;ž,()=e1(c)+qe 1(c).>ž,D[J()()]+f(();(c1))1()Zc2122(c02s)+(sc3)ecdsc()c1f(K;K)=0:ž,D[J()()]+f(();(c1))1()Zc2122(c02s)+(sc3)ecdsc()c1Zfc(c)+De1(c)yJ(y)dy1+@f(0;0)111R1(c)c1121(c)c(2+3)1(c)+@2f(0;0)e+egec1(c)+2Z+fc (c)+De 1(c)yJ(y)dy1+@f(0;0)111R 1(c)c112 1(c)c(2+3) 1(c)+@2f(0;0)e+egqec 1(c)+2=(c;(c))e1(c)+(c; (c))qe 1(c)110:Ïd,()•(2.2.5)þ).2y()•(2.2.5)e).PL=maxfmaxfj@11f(u;v)j;j@12f(u;v)j;j@22f(u;v)jgg;(u;v)2[0;K]214L=lnq;Q(c; )=max1;:(1)1(c)(c; 1(c))+4LeqQ(c;r),K<0.>ž,k()=0;ž,k()=e1(c)qe 1(c).l,>ž,D[J()()]+f(();(c1))1()Zc2122(c2s)0+(sc3)ecdsc()c1f(0;0)=0:8 1Ù‘kšÛÜ*Ñ‘Úž¢«+.Åc)ž,D[J()()]+f(();(c1))1()Zc2122(c2s)0+(sc3)ecdsc()c1Ze1(c)fc(c)+De1(c)yJ(y)dy1+@f(0;0)111R1(c)c1121(c)c(2+3)+@2f(0;0)e+egc1(c)+2Zqe 1(c)fc (c)+De 1(c)yJ(y)dy1+@f(0;0)111R 1(c)c112 1(c)c(2+3)+@2f(0;0)e+egc 1(c)+2+f(();(c))e1(c)@f(0;0)+@f(0;0)e1(c)c1112+qe 1(c)@f(0;0)+@f(0;0)e 1(c)c112=(c;(c))e1(c)(c; (c))qe 1(c)+f(();(c))111@1f(0;0)()@2f(0;0)(c1)(c; (c))qe 1(c)4L(e21(c)2qe(1+)1(c)+q2e2 1(c))1q(c; (c))e 1(c)4L(12q+q2)e2 1(c)1(q(c; (c))+4L4Lq)e 1(c)1=q((c; (c))+4L4Lq)e 1(c)10:Ïd,()•(2.2.5)e).é?¿c>c,½Â:=2C(R;[0;K])j()()()…()3RþüNØ~:w,´B(R;R)˜‡š˜4àf8.Ún2.2.5.e(H1)(H3)¤á,KF:!•3ØÄ:.y².(1)é?¿2,k0K;0H K;u´,0FK.?˜ÚdÚn2.1•,F'uüNØ~.ey()F()F().é?¿2R,âþ)½Â,k0c()()+(H)():9 üa‘kšÛÜ*Ñ‘«+.1Å)?,Z1(s)()(H)(s)ecds=(F)()(F)():c1Ónk()(F)()(F)():lF2.=F:!.(2)é?¿1;22,j12j!0ž,kjF1F2j!0.j(H1)(s)(H2)(s)jDjJ1(s)J2(s)j+(D1)j1(s)2(s)j+jf(1(s);1(sc1))f(2(s);2(sc1))jZsc2122(sc2r)+j1(rc3)2(rc3)jecdrc1Z1DJ(sy)jjejsjds+(D)jjejsj121121+maxj@f(u;v)j+maxj@f(u;v)jjjejsj1212(u;v)2[0;K]2(u;v)2[0;K]2Zsc212jsj2(sc2r)+j12jeecdr;c1j12j!0ž,kjH1H2j!0,jF1F2j!0.(3)F();.w,F˜—k..eyFÝëY.é?¿2,kZ01(F)0()=(H)(s)ec(s)dsc11=(F)()+(H)()c2cc+1 K:c2dSchauderØÄ:½nŒ,ŽfF3þ•3ØÄ:.½n2.2.1e(H1)(H3)¤á,K•3c>0,¦é?¿cc,XÚ(2.1.4)•3üNØ~Åc)(u(x;t);v(x;t))=(U(x+ct);V(x+ct)),…÷v>.^‡(2.2.2).y².dÚn2.2.5Œ•,c>cž,ŽfF3þØÄ:U÷vZ1(s)U()=(HU)(s)ecds:c110 1Ù‘kšÛÜ*Ñ‘Úž¢«+.Åc)5¿UüN…k.,llimU()•3.PlimU()=A.dâ7ˆ{KÚ!+1!+1f(K;K)=0ŒA=K,llimU()=K.d()U()()Úþ),e)!+1½ÂŒ•,limU()=0.ldÚn2.2.1•U•(2.2.5)†(2.2.6)).!1c=cž,cn;n2N,÷vcn>c;limcn=c,K•3n!+1Z1(s)Un()=(HUn)(s)ecnds:cn1dZ01U0()=(HU)(s)ecn(s)dsnncn11=2Un()+(HUn)()cncncn+1 K;c2nÚjUn()jK,ŒfUn();n2Ng;,•3U()÷vlimUn()=U().dn!+1uUn()'u2RüNØ~,ÏdU()'u2R•üNØ~,…Z1(s)U()=(HU)(s)ecds:c1U()÷vlimU()=0,limU()=K.Ïd,c=cž,U()=U(x+ct)!1!+1•(2.2.5)†(2.2.6)).l,dÚn2.2.1Œ•,½n2.2.1¤á.x2.3Åc)ìC5R00Ún2.3.1.é?¿<0,U()d<1.112y².P1=@1f(0;0)+@2f(0;0),2=@2f(0;0)@1f(0;0),K@1f(0;0)=2,1+200@2f(0;0)=2.Ï•1>0,¤±•3<0,¦é<,k1122U()+U(c1)L[U()+2U()U(c1)+U(c1)]:4411 üa‘kšÛÜ*Ñ‘«+.1Å)0âVÐmª,?,k12f(U();U(c))=f(0;0)+@1f(0;0)U()+@2f(0;0)U(c1)+@11f(0;0)U()212+@12f(0;0)U()U(c1)+@22f(0;0)U(c1)212@1f(0;0)U()+@2f(0;0)U(c1)j@11f(0;0)jU()212j@12f(0;0)jU()U(c1)j@22f(0;0)jU(c1)2121+2U()+U(c1)22L[U2()+2U()U(c)+U2(c)]11121+211U()+U(c1)U()U(c1)224412=[U()+U(c1)]+[U(c1)U()]4212U()+[U(c1)U()]:42Zc2Z022(c222s)s-Ue()=U(sc3)ecds=U(+sc2c3)ecds,(c1c1Ü(2.2.5)k012cU()D[JU()U()]+U()+[U(c1)U()]+1(Ue()U()):(2.3.1)420é(2.3.1)lÈ©,Ù¥<,kZZ1c[U()U()]D[JU(s)U(s)]ds+U(s)ds4ZZ2+[U(sc1)U(s)]ds+1(Ue(s)U(s))ds:(2.3.2)2Ï•U(1)=0,limU()=0.?k!1Zlim[JU(s)U(s)]ds!1ZZZ+1+1=limJ(r)U(sr)drJ(r)U(s)drds!111ZZ+1=limJ(r)[U(sr)U(s)]drds!11ZZ+1Z1=limrJ(r)U0(sr)ddrds(2.3.3)!110Z+1Z1=rJ(r)U(r)dds;1012 1Ù‘kšÛÜ*Ñ‘Úž¢«+.Åc)Zlim[U(sc1)U(s)]ds!1ZZ1=climU0(sc)dds11!10Z1=c1U(c1)d;(2.3.4)0†Zlim(Ue(s)U(s))ds!1ZZZ0022r22r=limecU(s+rc2c3)drecU(s)drds!1c1c1ZZ022r=limec[U(s+rc2c3)U(s)]drdsc!11ZZ0Z122r0=limec(rc2c3)U(s+rc2c3)ddrds(2.3.5)c!110Z0Z122r=ec(rc2c3)U(+rc2c3)ddr:c10-(2.3.2)¥!1,(Ü(2.3.3),(2.3.4),(2.3.5),kZ+1Z1ZZ112c1cU()DrJ(r)U(r)ddr+U(s)dsU(c1)d104120Z0Z1122r+ec(rc2c3)U(+rc2c3)ddr:c10Ún2.3.1¤á.Ún2.3.2.•3>0,¦U()=O(e).R0y².½ÂW()=U(s)ds;.´yW()üNØ~…W(1)=0.¯¢10R2þ,é1;22R;1<2;W(1)W(2)=1U(s)ds0:Äky²W()30(1;]þŒÈ(<).é(2.3.1)lÈ©,-!1,kZZZ+1JU(s)ds=J(sy)U(y)dyds111Z+1Zy=J(y)U(s)dsdy11Z+1=J(y)W(y)dy1Z+1=J(y)W(y)dy1=JW()13 üa‘kšÛÜ*Ñ‘«+.1Å)†2cU()D[JW()W()]+[W(c1)W()]2Z+1W()+Ue(s)dsW():(2.3.6)1410Ï•U()0,¤±Z+1JW()W()=J(r)(W(r)W())dr1Z0Z+1=J(r)(W(r)W())dr+J(r)(W(r)W())dr10Z+1=J(r)[W(+r)+W(r)2W()]dr00:â(2.3.6)Œ±ZcU()1W()+2[W(c)W()]+Ue(s)dsW():(2.3.7)11421é(2.3.6)l!È©,-!1,(ÜW(1)=0,kZZZ10lim[W(sc1)W(s)]ds=(c1)limW(c1)dds!1!10Z1=(c1)W(c1)d:(2.3.8)0ZZZ022rlimUe(s)ds=limecU(s+rc2c3)drds!1!1c1Z022r=ecW(+rc2c3)dr(2.3.9)c1†ZlimUe(s)dsW()!1ZZ022r=limec[W(s+rc2c3)W(s)]drdsc!11ZZ0Z122r0=limec(rc2c3)W(s+rc2c3)ddrds(2.3.10)c!110Z0Z122r=ec(rc2c3)W(+rc2c3)ddr:c1014 1Ù‘kšÛÜ*Ñ‘Úž¢«+.Åc)é(2.3.7)l1È©,(Ü(2.3.8)-(2.3.10),kZZ112c1cW()W(s)dsW(c1)d4120Z0Z1122r+ec(rc2c3)W(+rc2c3)ddr;c10l,Z0Z1122rec(rc2c3)W(+rc2c3)ddrc10Z1Z2c11+W(c1)d+cW()W(s)ds:2041Ï•W(c1)W();W(+rc2c3)W(),Z1Z1W(c1)dW()d=W()00†Z0Z1122rec(rc2c3)W(+rc2c3)ddrc10Z0122rW()ec(rc2c3)drc1Z+1122r=W()ec(r+c2c3)dr:c0?˜ÚŒZ+1j2jc1122rc++ec(r+c2+c3)drW()2c0ZZ011W(s)ds=W(+s)ds:4141duZ+1122rc 1ec(r+c2+c3)dr=+c 1(2+3)c02†Z0W(+s)ds=W(+)lW(l)l;2(l;0):l15 üa‘kšÛÜ*Ñ‘«+.1Å)0Ïd,él>0;,kj2j11c1+++12+13W()22Z01W(+s)ds41Z01W(+s)ds4l1lW(l)4†c(42+2j2j12+41+41(2+3))W(l)W():1l 2c(42+2j2j12+41+41(2+3))À¿©Œl0¦0:=1l022(0;1),KW(l0)0W(),0Ù¥.½ÂWf()=W()e,KWf(l)=Wf(l)e(l0)Wf()el0:000110=l0ln0,é,Wf(l0)Wf()¤á.Ïd,M1Wf()M2,Ù¥nono0000M1=minWf(s)js2[l0;];M2=maxWf(s)js2[l0;]:qW()U()limWf()=lim=lim;!1!1e!1e?kW()=O(e),U()=O(e).[28]R+1Ún2.3.3.(Ikehara)-F()=eu()d,Ù¥u()´RþüN4~0E()¼ê.eFŒ±L«¤F()=(0)k+1,Ù¥k>1;0>0,…E()3‘/«•0Re<0S)Û,Ku()E(0)lim=:!+1ke0(0+1)½n2.3.1e(H1)(H2)¤á,(U());V())=(U(x+ct);V(x+ct))´(2.1.4)Åc),Ù¥cc,K(i)c>cž,klimU()e1(c)=a(c);limU0()e1(c)=a(c)(c);001!1!116 1Ù‘kšÛÜ*Ñ‘Úž¢«+.Åc)limV()e1(c)=b(c)a(c);limV0()e1(c)=b(c)a(c)(c);00001!1!1(ii)c=cž,klimU()1e1(c)=a(c);limU0()1e1(c)=a(c)(c);001!1!1limV()1e1(c)=b(c)a(c);limV0()1e1(c)=b(c)a(c)(c):00001!1!1y².Ï•V()÷v(2.2.3),dU()ìC5,Œ±V()ìC5.e¡Ì‡y²U()ìC5.âÚn2.3.3,é0Óž¦±e¿3RþéÈ©,ŒZZcU0()ed=cedU()=cL();RRZZZD[JU()U()]ed=DeJ(y)U(y)dydL()RRRZZ=DJ(y)eyU(y)e(y)ddyL()RRZ=DJ(y)eydy1L();RZZ@f(0;0)U()edU()ed=[@f(0;0)]L();1111RRZ@f(0;0)U(c)ed=@f(0;0)ec1L()212R17 üa‘kšÛÜ*Ñ‘«+.1Å)†ZZc2122(c2s)eecU(sc3)dsdcR1ZZc212(+2222)s=eececU(sc3)dsdcR1ZZc2122222s(+)=eecU(sc3)dsd(ec)c+2R1Z12(c2+c3)(c2c3)=eeU(c2c3)dc+2R12c(2+3)=eL():c+2²OŽŒZ+1(c;)L()=e[@f(0;0)U()+@f(0;0)U(c)f(U();U(c))]d:12111(2.3.12)écc,(2.4.12)C¤R+11e[@1f(0;0)U()+@2f(0;0)U(c1)f(U();U(c1))]d(c;)L()Z1Z0eU()d=eU()d:01(2.3.13)c>cž,3‘.«•0cž,k=0;c=cž,k=1.Re=1(c)ž,(c;)=0•k˜‡":=•=1(c).ÏdE()3‘.«•00ž,sin y=sin c1=0,=0.a22222qu[19,½n2.1],[10,½n4.8]y²,é(2.3.14)|^Ún2.3.3,Œy½n2.3.1¤á.x2.4Åc)Ø•35½n2.4.1e(H1)(H3)¤á,0.^‡(2.2.2)Åc).y².00,ò(2.3.12)C/,kZ+1e[(c;)U()@f(0;0)U()@f(0;0)U(c)+f(U();U(c))]d=0:12111(2.4.1)dulim(c;)=+1,gñ,bؤá,l½n2.4.1¤á.!+1x2.5ž¢Ú=zÇé•1Å„ÝK•!•Äž¢1;2;3Ú=zÇ1; 2écK•.dÚn2.2.3•,(c;)=0,@(c;)j=0.Äk•Äž¢;;écK•.@123(1)dÚn2.2.3Œ•,dc@(c;)@(c;)==j(c;)d1@1@cc@2f(0;0)ec1=1+@f(0;0)ec1+12(1+(c+)(+))ec(2+3)j(c;):12(c+2)222319 üa‘kšÛÜ*Ñ‘«+.1Å)@2f(0;0)>0ž,c'u1üN4O;@2f(0;0)=0ž,c†1Ã'.(2)dÚn2.2.3Œ•,dc@(c;)@(c;)==j(c;)d2@2@cc 12ec(2+3)c+2=1+@f(0;0)ec1+12(1+(c+)(+))ec(2+3)j(c;)12(c+2)2223>0:Ónkdc>0.l,c'u;üN4O.d323e¡•Ä1; 2écK•.(3)dÚn2.2.3Œ•,dc@(c;)@(c;)==j(c;)d1@ 1@c1+2ec(2+3)c+2=c1 12c(2+3) 12(2+3)c(2+3)j(c;):1@2f(0;0)e(c+2)2ec+2e>0:c'u1üN4O.(4)dÚn2.2.3Œ•,dc@(c;)@(c;)==j(c;)d 2@ 2@ccec(2+3)(c+2)2=c1 12c(2+3) 12(2+3)c(2+3)j(c;)1@2f(0;0)e(c+2)2ec+2e<0:dþªŒ•c'u2üN4~.y3?ؘ«AÏœ/.1=0ž,«+¥vk‡Nl¹Äã=z•·Žã,džc=c1•vk·Žã•§@tu(x;t)=D[Ju(x;t)u(x;t)]+f(u(x;t);u(x;t1))(2.5.1)1Å„Ý,c1÷v(c1;1)=0,@(c1;)j=0.ùp0@1Z(c;)=c+DeyJ(y)dy1+@f(0;0)+@f(0;0)ec1:012R20 1nÙ‘kšÛÜ*Ñ‘Úž˜¢D/¾.1Å)x3.1Úó‘X¬uÐ,·‚±Œ)¹‚¸Éî•À/,?Ñyˆ«¾„D/¾.D/¾D˜†´êÆ!)ÔÆ!šÆïÄ•‡‘K.@ÏïÄD/¾´Kermack;McKendrick,1927c¦‚ïÄXe.8>>dS(t)= S(t))I(t);>dt:dR(t)= I(t);dtÙ¥S(t);I(t);R(t)©O•´aö,/¾ö,¡Eö<•—Ý; ; •D/ÇÚ¡ S0EÇ.©[29]Ä2)êR0=,§û½D/¾´Äu).T.•D/¾ïÄC½Ä:.©[3033]²LØäU?,¦D/¾.•Cy¢.5¿ŒõêD/¾ÑkdÏÏ,©[34]ïÄ8RR>>@t+1<@tS(x;t)=d1S(x;t) S(x;t)11I(y;s)K(xy;ts)dyds@RtR+1>>@tI(x;t)=d2I(x;t)+ S(x;t)11I(y;s)K(xy;ts)dyds I(x;t):@@tR(x;t)=d3R(x;t)+ I(x;t);(3.1.2)3˜½^‡e,XÚ•31Å).Xu[23]ïÄ8>@S(x;t)=d((JS)(x;t)S(x;t))dS(x;t) S(x;t)(KI)(x;t);<@t1@I(x;t)=d((JI)(x;t)I(x;t))+ S(x;t)(KI)(x;t) I(x;t);(3.1.4)>>@t2:@@tR(x;t)=d3((JR)(x;t)R(x;t))+ I(x;t); S0R0=>1ž,•3c>0,¦c>cž,XÚ•31Å).R01ž,XÚØ•31Å).21 üa‘kšÛÜ*Ñ‘«+.1Å)ØJuyXÚ(3.1.4)vk•Ä<•Ñ)ÇÚkÇ,ÙòïÄ80•1Å„Ý.ò(S(x;t);I(x;t))=(S();I())“(3.1.5),Œ8<0cS()=DS[(JS)()S()]+dS() S()(KI)();(3.2.1):cI0()=DI[(JI)()I()](+d+r)I()+" S()(KI)();Ù>.^‡(S(1);I(1))=(S0;0):(3.2.2)e¡•Iy²(3.2.1)÷v(3.2.2)šK)•35¯K.ò(3.2.1)1‡•§3E=(S0;0)?‚5z,ÙA•§•Z+1(c;)=DeyJ(y)dy(D+c++d+r)+" SL(c;):(3.2.3)II01Z+1Z+1L(c;)=e(y+cs)K(y;s)dyds:01" Ún3.2.1.eR0=d(+d+r)>1,K•3c>0,>0,¦:@(c;)=0;(c;)j(c;)=0:@(i)ec>c,K(c;)=0kü‡¢Š1(c);2(c),÷v1(c)<<2(c),…S2(1(c);2(c))ž,(c;)<0;2(0;1(c))(2(c);c)ž,(c;)>0.(ii)e00,(c;)>0.!¥·‚obR0>1,c>c.Pi(c)=i;i=1;2.½Â(3.2.1)þ,e).½Â3.2.1e¼ê(S;I);(S;I)A??ëYŒ‡…÷v:80>>cS()DSJS()S()+dS()S()(KI)()>>><0cI()DIJI()I()(+d+r)I()+" S()(KI)()>>cS0()D[JS()S()]+dS() S()(KI)()>>S>:cI0()D[JI()I()](+d+r)I()+" S()(KI)()IK¡(S;I);(S;I)•(3.2.1)þ,e).no" Ún3.2.2.e(A1)(A3)¤á,R0=d(+d+r)>1;c>c,20;min2;21v,()11" (S0)2L(c;1)" (kS0)2L(c;1)Mmax;;(c;1+)+" S0L(c;1+)(c;1+)+" ke L(c;1+)23 üa‘kšÛÜ*Ñ‘«+.1Å)K(S;I);(S;I)•(3.2.1)þ,e),Ù¥1S()=S0=;I()=e;dnoS()=max0;Ske ;I()=e1(1Me):0y².w,(S;I)•(3.2.1)þ).e¡y²(S;I)•(3.2.1)e).-=1lnS0,1k1ž,S()=0,0<:<1ž,S()=S0ke .-k!1;k>S0vŒ,0< <1v,k =1,KcS0()D[JS()S()]+dS()+ S()(KI)()SZ+1ck kD[1J(y)e ydy]+SL(c;)e(1)e S0110:1ž,S()=0.Ï•1;0<<2,¤±S01" S0L(c;1)M()2f(c;1+)+" S0L(c;1+)g:kd(c;1)=0;(c;1+)<0k:" SL(c;)Mef(c;+)+" SL(c;+)g:01101?˜ÚkZ+1cDe1yJ(y)dy+(D++d+r)e11II1Z+1Mec(+)De(1+)yJ(y)dy+(D++d+r)e1:1II1=:cI0()D[JI()I()](+d+r)I():I1 ()<1ž,S()=S0ke;ke(kS0)2,du()" ke()L(c;1)M(c;1+)+" ke L(c;1+)max1" (kS0)2L(c;1)=;(c;1+)+" ke L(c;1+)Ïd,M(c;+)+" kMe L(c;+)" ke()L(c;)0:11124 1nÙ‘kšÛÜ*Ñ‘Úž˜¢D/¾.1Å)=:no" ke L(c;)Me(c;+)+" ke L(c;+):111no½Â()=maxfI();0g.X>max1ln1;1lnS0,½Â:Mk89>>'1=S(X);'2(X)=(X);>><==('();'())2C([X;X];R2)S()'()S();()'()I();:X>>1212>>:;82[X;X]½Â:88>>S();<X;>>();<X;<<1()='1();XX;2()='2();XX;(3.2.4)>>>>::'1(X);>X;'2(X);>X:?Øe>Š¯K:8<0R+1cS()=DS1J(y)1(y)dy+(DS+d+(K2)())S():0R+1cI()=DI1J(y)2(y)dy(DI++d+r)I()+" 1()(K2)()(3.2.5)S(X)=S(X);I(X)=(X)=maxf0;I(X)g:(3.2.6)d‡©•§)•3•˜5½n[36]Œ±(3.2.5)-(3.2.6)k•˜),P•(S;I),…÷v(S;I)2C2([X;X];R).Ïd,½ÂŽfF=(F1;F2):X!C([X;X];R),F('1;'2)=(S;I);('1;'2)2X:e¡y²ŽfFkØÄ:.Ún3.2.3.e(A1)(A3)¤á,KŽfF:X!X.y².?('1;'2)2X,w,F1('1;'2)(X)=S(X)=S(X);F2('1;'2)(X)=(X).-=1lnS0,2[;X]ž,S()=0;0´(3.2.5)1˜ªe);1k12[X;1)ž,S()=S0ke ,Z+1cS0()DJ(y)(y)dy+(D+d+(K)())S()S1S21Z+1cS0()DJ(y)S(y)dy+(D+d+(KI)())S()SS10:25 üa‘kšÛÜ*Ñ‘«+.1Å)2[X;X]ž,kZ+10cS()DSJ(y)1(y)dy+(DS+d+(K2)())S()1Z+10cS()DSJ(y)S(y)dy+(DS+d+(KI)())S()10;¤±2[X;X]ž,S()S()S().-=1ln1,2[X;]ž,()=2M2I();1()='1()S();2()='2()();…Z+1cI0()DJ(y)(y)dy+(D++d+r)I()" ()(K)()I2I121Z+1cI0()DJ(y)I(y)dy(D++d+r)I()" ()(K)()II1210:2[2;X]ž,()=0.w,I()0:2[X;X]ž,kZ+10cI()DIJ(y)2(y)dy+(DI++d+r)I()" 1()(K2)()1Z+10cI()DIJ(y)I(y)dy+(DI++d+r)I()" S()(KI)()10;¤±2[X;X]ž,()I()I().nþ¤ã,Ún3.2.3¤á.Ún3.2.4.ŽfF:X!XëY.y².?('1;'2);('e1;'e2)2X,-F('1;'2)=(S;I);F('e1;'e2)=(S;eIe).d(3.2.5),Z1S()=S(X)exp[DS+d+(K2)(s)]dscXZZ11+exp[DS+d+(K2)(s)]ds(DSJ1()+)d(3.2.7)cXc†1I()=(X)exp(DI++d+r)(+X)cZ11+exp(DI++d+r)()[DIJ2()+" 1()K2()]d:cXc(3.2.8)26 1nÙ‘kšÛÜ*Ñ‘Úž˜¢D/¾.1Å)<Xž,1()=e1()=S().>Xž,1()='1(X);e1()='e1(X).é?¿('1;'2);('e1;'e2)2X.l,Z+1J(y)[(y)e(y)]dy(J1)()(Je1)()=111ZXjJ(y)[1(y)e1(y)]dyjXZ+1+J(y)[1(X)e1(X)]dyX2maxj'1(y)'e1(y)j;y2[X;X](J2)()(Je2)()2maxj'2(y)'e2(y)j;y2[X;X]†Z+1Z+1K(y;s)[(ycs)e(ycs)]dyds(K2)()(Ke2)()=2201ZZ+1x1xt=K(x;)[2(t)e2(t)]dtds11ccZZ+1X1xtK(x;)[2(t)e2(t)]dtds1XccZZ+1x1xt+K(x;)[2(X)e2(X)]dtds1Xcc2maxj'2(y)'e2(y)j;y2[X;X]1()K2())e1()Ke2())=1()K2())1()Ke2())+1()Ke2())e1()Ke2()j1()jK2())Ke2())+1()e1()Ke2()2Smaxj'(y)'e(y)j+2e1L(c;)maxj'(y)'e(y)j011111y2[X;X]y2[X;X]†DIJ2()+" 1()K2()DIJe2()" e1()Ke2()DIJ2()Je2()+" 1()K2()e1()Ke2()2Dmaxj'(y)'e(y)j+2" [S+e1L(c;)]maxj'(y)'e(y)j:I220111y2[X;X]y2[X;X]d(3:2:7);(3:2:8)ŒŽfFëY.é?¿2[X;X],S();I();S0();I0()k.,F(X);,ŽfF:X!X´ëY.27 üa‘kšÛÜ*Ñ‘«+.1Å)dX½ÂŒ•,X´k.4à8,(ÜÚn3.2.3,Ún3.2.4,ÚSchauderØÄ:½nŒ•,•3(SX;IX)2X,¦(SX();IX())=F(SX;IX)();2[X;X]:-!1Œ±(3.2.1))•35.•y²(3.2.1))•3,kéSX;IX3C1;1([X;X])ŠO.½Â:no1;110C([X;X])=u2C([X;X])u;u´LipschitzëYùp0ju0(x)u0(y)jkukC1;1([X;X])=maxjuj+maxjuj+sup:x2[X;X]x2[X;X]x;y2[X;X];x6=yjxyjÚn3.2.5.e(A4)¤á,Ké?¿½Y>0(Y0,¦kSXkC1;1([Y;Y])max1ln1;1lnS0:Mky².(SX;IX)÷v:Z+1cS0()=DJ(y)Sb(y)dy+(D+d+(KIb)())S();(3.2.9)XSXSXX1Z+1cI0()=DJ(y)Ib(y)dy(D++d+r)I()+" S()(KIb)();(3.2.10)XIXIXXX1ùp88>>SX(X);>X;>>IX(X);>X;<>>>::S();<X;();<X:2[Y;Y]ž,SX()S()=S0;IX()I(Y)=e1Y,u´kZ+1jS0()jDSJ(y)Sb(y)dy++DS+djS()j+(KIbXXXX)()SX()c1ccc+[2DS+d+ e1YL(c;1)]S0=c28 1nÙ‘kšÛÜ*Ñ‘Úž˜¢D/¾.1Å)ÚZ+1jI0()jDIJ(y)Ib(y)dy+DI++d+rjI()j+" (KIbXXXX)()SX()c1ccZ+1DI1Y1yDI++d+r1Y" S0L(c;1)1YeJ(y)edy+e+ec1ccR+11yDI1J(y)edy+(DI++d+r)+" S0L(c;1)1Y=e:c•3~êC1(Y)>0,¦kSXkC1([Y;Y])0,¦é?¿;2[Y;Y],ÑkjS0()S0()jC(Y)jj:XX2d(3.2.10)ŒZ+1cjI0()I0()jDJ(y)[Ib(y)Ib(y)]dy+(D++d+r)jI()XXSXXIX1IX()j+" (KIbX)())SX()(KIbX)())SX();(3.2.16)Z+RJS4=J(y)[IbX(y)IbX(y)]dyRJZZ+RJ+RJ=J(x)IbX(x)dxJ(x)IbX(x)dxRJRJZZRJ+RJJ(x)IbX(x)dx+J(x)IbX(x)dxRJ+RJZ+RJ+jJ(x)J(x)jIbX(x)dxRJ1(Y+RJ)1(YRJ)1(Y+RJ)kJkL1e+kJkL1e+2LJRJejj:(3.2.17)30 1nÙ‘kšÛÜ*Ñ‘Úž˜¢D/¾.1Å)Ïd,é?¿;2[Y;Y],ÑkjI0()I0()jC(Y)jj:XX2nþ¤ã,•3C(Y)>0,¦é?¿;2[Y;Y](Ymax1ln1;1lnS0:Mk" ½n3.2.1e(A1)(A4);R0=d(+d+r)>1¤á,Ké?¿c>c,XÚ(3.2.1)•31Å)(S(x+ct);I(x+ct)),…lim(S();I())=(S0;0),Ù¥=x+ct;2R.!1noy².én2N,À4OêfXg+1,…÷vX>max1ln1;1lnS0;nn=1nMklimXn=+1:e2[Xn;Xn],K•3(SXn;IXn)2Xn;¦(3:2:9);(3:2:10)¤á,…n!1÷vÚn3:2:5.Àf(SXn;IXn)gff(SXn;IXn)gk2N,…Âñu(S;eIe)2C1(R);kk3C1(R)¥,k!+1ž,SXn!S;IeXn!Ie.Ï•JÚK3R´;|,¤±lockkZ+1Z+1limJ(y)SbXn(y)dy=J(y)Se(y)dy=JSe();k!+11k1Z+1Z+1limJ(y)IbXn(y)dy=J(y)ISf(y)dy=JIe();k!+11k1Z+1Z+1Z+1Z+1limK(y;s)IbXn(ycs)dyds=K(y;s)Ie(ycs)dyds=KIe():k!+101k01?˜ÚŒ,(S;eIe)÷v(3.2.1)Úmaxf0;Ske g=S()Se()S()=S;00maxf0;e1(1Me)g=()Ie()I()=e1:R+1…1I()d<+1.!1ž,Se()=S0;Ie()=0.l,(S;I)´(3.2.1)1Å).½n3.2.1¤á.31 o(†Ð"o(†Ð"©ïÄüa‘kž¢šÛ܇A*ÑXÚ.†ZhouïÄ(2.1.3)ƒ',(2.1.4)`:3u§•Äž¢2;3,¦«+.•bCy¢)¹.†§ùrïÄ(3.1.4)ƒ',(3.1.5)•Ä<•Ñ)Úk,¦D/¾.•kïÄ¿Â.$^SchauderØÄ:½nÚþe)•{y²,XÚ(2.1.4),(3.1.5)•31Å),¿1Å)31?ìC5.,,©EkØvƒ?.3.(2:1:4)¥,·‚vk•ÄÅc)3+1?ìC5±9)•½5,•˜5.3.(3.1.5)¥,·‚vkc=cž,XÚ1Å)•35±91Å)3+1?ìC5.©•?ØXÚÏLþ²ï:1Å)•35,¿vk•ÄXÚëü²ï:1Å)•35.d,'u(3.1.4)E,kéõ¯KŠïÄ,~X:ž¢é;¾D„ÝK•±9)•˜5,•½5,·ò3±ïÄ¥UYõ.32 ë•©z[1]±í,M“Ì.,uЕ§ìCÅ„Ú1Å)ïÄ{0[J].êÆ?Ð,2010,39(1):1-22.[2]V.Volpert.S.Petrovskii.Reaction-di usinwavesinbiology[J].PhysicsofLifeReviews,2009,6:267-310.[3]R.A.Fisher.Thewaveofadvanceofadvantageousgenes[J].AnnEugenics,1937,7(4):355-369.[4]A.N.Kolmogorov,I.G.Petrovsky,N.S.Piskunov.Investigationoftheequationofdi usioncom-binedwithincreasingofthesubstanceanditsapplicationtoabiologyproblem[J].BullMoscowStateUniversitySerA:MathandMech,1937,1(6):1-25.[5]“Ù,o,²#,Çä±.‡A*Ñ•§ÚØ(1‡)[M].®:‰Æч,2011.[6]Y.B.Zeldovich,D.A.Frank-Kamenetskii.Atheoryofthermalpropagationof ame[J].ActaPhysicochimUSSR,1938,9:341-350.[7]D.G.Aronson,H.F.Weinberger.Nonlineardi usioninpopulationgenetics,Combustion,andnervepulsepropagation[J].PartialDi erentialEquationandTopics,1975,466:5-59.[8]D.G.Aronson,H.F.Weinberger.Multidimensionalnonlineardi usionarisinginpopulationdy-namics[J].Math,1978,30:33-76.[9]K.W.Schaaf.Asymptoticbehaviorandtravelingwavesolutionforparabolicfunctionaldi er-entialequations[J].TransAmerMathSoc,1987,302:587-615.[10]Z.C.Wang,W.T.Li,S.Ruan.TravelingFrontsinMonostableEquationswithNonlocalDelayedE ects[J].JDynDi Equat,2008,20:573-607.[11]W.T.Li,Z.C.Wang,S.Ruan.Onthedi usiveNicholson.sBlow iesequationwithnonlocaldelays[J].NonlinearSci,2007,17:505-525.[12]Z.C.Wang,W.T.Li,S.Ruan.Travelingwavefrontsinreaction-di usionsystemswithspatio-temporaldelays[J].JDi erEqns,2006,222:185-232.[13]S.Pan,W.T.Li,G.Lin.Travelingwavefrontsinnonlocaldelayedreaction-di usionsystemsandapplications[J].ZAngewMathPhys,2009,60:377-392.[14]S.L.Wu,H.Q.Zhao.TravelingFrontsforaDelayedReaction-di usionSystemwithaQuiescentStage[J].CommunNonlinearSciNumerSimulat,2011,16:3610-3621.[15]J.Wu,ZouX.TravelingWaveFrontsofareactiondi usionsystemwithdelay[J].JDynDi Eqns,2001,13:651-687.33 üa‘kšÛÜ*Ñ‘«+.1Å)[16]W.T.Li,G.lin,S.Ruan.Existenceoftravingwavesolutionsindelayedreactiondi usionsystemswithapplicationstodi usion-competionsystems[J].Nonlinearity,2006,19:1253-1273.[17]C.TLee,M.F.Hoopes,J.Diehl.Non-localconceptsinmodelsinbiology[J].JTheorBiol,2001,210:201-219.[18]S.Pan.Travelingwavefrontsofdelayednon-localdi usionsystemswithoutquasimonotonicity[J].JMathAnal,2008,246:415-424.[19]Z.X.Yu,R.Yuan.ExistenceandAsymptoticsofTravelingWavesforNonlocalDi usionSys-tems[J].NonlinearSciandNonequilibriumandComplPhenomena,2012,45:1361-1367.[20]K.Zhou,Q.R.Wang.TravelingWaveSolutionsinDelayedNonlocalDi usionSystemswithMixedMonotonicity[J].JMathAnalAppl,2010,372:598-610.[21]S.A.Gourley,J.Wu.Delayednon-localdi usivesysteminbiologicalinvasionanddiseasespread[J].FieldsInstCommun,2006,48:137-200.[22]K.Zhou,Y.Lin,Q.R.Wang.ExistenceandAsymptoticsofTravelingWaveFrontsforaDelayedNonlocalDi usionModelwithaQuiescentStage[J].CommunNonlinearSciNumerSimulat,2013,18:3006-3013.[23]Z.T.Xu.Wavepropagationinaninfectiousdiseasemodel[J].JMathAnalAppl,2017,449:853-871.[24]A.I.Volpert,V.A.Volpert.Travelingwavesolutionsofparabobicsystems[J].TransofMathMonographs,1994,140.[25]K.P.Hadeler,M.A.Lewis.Spatialdynamicsofthedi usivelogisticequationwithasedentarycompartment[J].CanadApplMathQuart,2002,10:473-499.[26]K.P.Hadeler,T.Hillen,M.A.Lewis.Biologicalmodelingwithquiescentphase[J].SpatialEcol-ogy,2009,6:101-127.[27]4?J,“r.˜a‘kž¢šÛ܇A*ÑXÚÅc)•35[J].ìÜŒÆÆ(g,‰Æ‡),2017,3:411-415.[28]D.V.Widder.Thelaplacetransform[M].PrincetoonN:PrincetonUniversityPress,1941.[29]W.O.Kermack,A.G.McKendrick.Acontributiontothemathematicaltheoryofepidemics[J].ProcRoySocLondonSerB,1927,115:700-721.[30]J.Medlock,M.Kot.Spreadingdisease:Integro-di erentialequationoldandnew[J].MathBiosci,2003,184:201-222.34 ë•©z[31]J.Coville,L.Dupaigne.Onanonlocalreactiondi usionequationarisinginpopulationdynamic-s[J].ProcRoySocEdinburghSectA,2007,137:727-755.[32]A.Ducrot,P.Magal,S.Ruan.Travelingwavesolutoninmultigroupage-structureepidemicsmod-els[J].ArchRationMechAnal,2010,195:311-331.[33]Y.Hosono,B.Tlyas.Travelingwavesforasimpledi usiveepidemicmodel[J].MathModelsMeth-odsApplSci,1995,5:935-966.[34]Y.Yang.Hopfbifurcationintwo-competitor,one-preysystemwithtimedelay[J].ApplMathComput,2009,214:228-235.[35]§ùr,J.‘kšÛÜ*Ñ‘Úž˜ž¢Kermack-MckendrickD/¾.1Å)[J].¥I‰Æ:êÆ,2015,45:765-788.[36]ëO¬,o{w,¸jS.‡©•§ÄnØ[M].®:‰Æч,2011.35 ïĤJïĤJ[1]4?J,“r.˜a‘kž¢šÛ܇A*ÑXÚÅc)•35,ìÜŒÆÆ(g,‰Æ‡),2017(40),3:411-415.36 ——²LA‡ãå,·.’Ø©=òC—(.£ŽåŠL§,%¥z›,•,lØ©K8^,(—žlN½,¥mŽÑØ(J,ŒN„´Ø†,F"Œ±•·a¬)¹˜°÷¿‰ò.=úm,·Ò‡.’,ù•N´·•ž1,‘vûB.=ò.’ƒS,AOŽ`˜(:a!Äk,a“4?J•Ú•Ï,4P“äk4pêÆ;’ƒ,ØØõ!õa,¦Ñ¬½Ï•·‚‰¦)¾.·‚‘¯K,g´Ø˜ß!íØ^„!Ü6ØÜnž,¦Ñ¬F%•Ï·‚)û¯K.¦„äkÕ<‚å,·‚•{:15735175371>f&‡:763265673@qq.com38 «ìÖ«ìÖL¤J.Šö¶:20cF39 ÆØ©¦^Ç(²ÆØ©¦^Ç(²<)ìÜŒÆk'3,¦^ÆØ©5½,=:Æk3¿•I[k'Å'½ÅxØ©E<‡Ú>f©,#NØ©Ú/,Œ±æ^K<,<½×£Ãã•,®?ÆØ©.Ó¿ì܌ƌ±^ØÓ•ª3ØÓxNþuL,DÂØ©ܽܩSN.—ÆØ©3)—„ÅdÆ.Šö¶:“¶:20cF40

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭