Temporal Autoencoding Improves Generative Models of.pdf

Temporal Autoencoding Improves Generative Models of.pdf

ID:34302094

大小:284.17 KB

页数:14页

时间:2019-03-04

Temporal Autoencoding Improves Generative Models of.pdf_第1页
Temporal Autoencoding Improves Generative Models of.pdf_第2页
Temporal Autoencoding Improves Generative Models of.pdf_第3页
Temporal Autoencoding Improves Generative Models of.pdf_第4页
Temporal Autoencoding Improves Generative Models of.pdf_第5页
资源描述:

《Temporal Autoencoding Improves Generative Models of.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、JMLR:WorkshopandConferenceProceedings0:1–14,00TemporalAutoencodingImprovesGenerativeModelsofTimeSeriesChrisH¨ausler∗,MartinP.Nawrotchausler@gmail.com,martin.nawrot@fu-berlin.deNeuroinformatics,FreieUniversit¨atBerlinAlexSusemihl∗,ManfredOpperalexsusemihl@gmail.com

2、,opperm@cs.tu-berlin.deArtificialIntelligence,TechnischeUniversit¨atBerlin∗Theseauthorshavecontributedequallytothiswork.AbstractRestrictedBoltzmannMachines(RBMs)aregenerativemodelswhichcanlearnusefulrep-resentationsfromsamplesofadatasetinanunsupervisedfashion.Theyh

3、avebeenwidelyemployedasanunsupervisedpre-trainingmethodinmachinelearning.RBMshavebeenmodifiedtomodeltimeseriesintwomainways:TheTemporalRBMstacksanumberofRBMslaterallyandintroducestemporaldependenciesbetweenthehiddenlayerunits;TheConditionalRBM,ontheotherhand,consid

4、erspastsamplesofthedatasetasacon-ditionalbiasandlearnsarepresentationwhichtakestheseintoaccount.HereweproposeanewtrainingmethodforboththeTRBMandtheCRBM,whichenforcesthedynamicstructureoftemporaldatasets.Wedosobytreatingthetemporalmodelsasdenoisingautoencoders,cons

5、ideringpastframesofthedatasetascorruptedversionsofthepresentframeandminimizingthereconstructionerrorofthepresentdatabythemodel.WecallthisapproachTemporalAutoencoding.Thisleadstoasignificantimprovementintheper-formanceofbothmodelsinafilling-in-framestaskacrossanumber

6、ofdatasets.Theerrorreductionformotioncapturedatais56%fortheCRBMand80%fortheTRBM.Takingtheposteriormeanpredictioninsteadofsinglesamplesfurtherimprovesthemodel’ses-timates,decreasingtheerrorbyasmuchas91%fortheCRBMonmotioncapturedata.Wealsotrainedthemodeltoperformfor

7、ecastingonalargenumberofdatasetsandhavearXiv:1309.3103v1[stat.ML]12Sep2013foundTApretrainingtoconsistentlyimprovetheperformanceoftheforecasts.Further-more,bylookingatthepredictionerroracrosstime,wecanseethatthisimprovementreflectsabetterrepresentationofthedynamicso

8、fthedataasopposedtoabiastowardsreconstructingtheobserveddataonashorttimescale.Webelievethisnovelapproachofmixingcontrastivedivergenceandautoencodertrain

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。