[NIPS 2013] Generalized Denoising Auto-Encoders as Generative Models

[NIPS 2013] Generalized Denoising Auto-Encoders as Generative Models

ID:40358745

大小:782.27 KB

页数:9页

时间:2019-08-01

[NIPS 2013] Generalized Denoising Auto-Encoders as Generative Models _第1页
[NIPS 2013] Generalized Denoising Auto-Encoders as Generative Models _第2页
[NIPS 2013] Generalized Denoising Auto-Encoders as Generative Models _第3页
[NIPS 2013] Generalized Denoising Auto-Encoders as Generative Models _第4页
[NIPS 2013] Generalized Denoising Auto-Encoders as Generative Models _第5页
资源描述:

《[NIPS 2013] Generalized Denoising Auto-Encoders as Generative Models 》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、GeneralizedDenoisingAuto-EncodersasGenerativeModelsYoshuaBengio,LiYao,GuillaumeAlain,andPascalVincentDepartementd’informatiqueetrechercheop´erationnelle,Universit´edeMontr´eal´AbstractRecentworkhasshownhowdenoisingandcontractiveautoencodersimplicitlycapturethestructureofthedata-generati

2、ngdensity,inthecasewherethecor-ruptionnoiseisGaussian,thereconstructionerroristhesquarederror,andthedataiscontinuous-valued.Thishasledtovariousproposalsforsamplingfromthisimplicitlylearneddensityfunction,usingLangevinandMetropolis-HastingsMCMC.However,itremainedunclearhowtoconnectthetra

3、iningprocedureofregularizedauto-encoderstotheimplicitestimationoftheunderlyingdata-generatingdistributionwhenthedataarediscrete,orusingotherformsofcorrup-tionprocessandreconstructionerrors.Anotherissueisthemathematicaljustifi-cationwhichisonlyvalidinthelimitofsmallcorruptionnoise.Wepropo

4、sehereadifferentattackontheproblem,whichdealswithalltheseissues:arbitrary(butnoisyenough)corruption,arbitraryreconstructionloss(seenasalog-likelihood),handlingbothdiscreteandcontinuous-valuedvariables,andremovingthebiasduetonon-infinitesimalcorruptionnoise(ornon-infinitesimalcontractivepe

5、nalty).1IntroductionAuto-encoderslearnanencoderfunctionfrominputtorepresentationandadecoderfunctionbackfromrepresentationtoinputspace,suchthatthereconstruction(compositionofencoderandde-coder)isgoodfortrainingexamples.Regularizedauto-encodersalsoinvolvesomeformofregu-larizationthatpreve

6、ntstheauto-encoderfromsimplylearningtheidentityfunction,sothatrecon-structionerrorwillbelowattrainingexamples(andhopefullyattestexamples)buthighingeneral.Differentvariantsofauto-encodersandsparsecodinghavebeen,alongwithRBMs,amongthemostsuccessfulbuildingblocksinrecentresearchindeeplearn

7、ing(Bengioetal.,2013b).Whereastheusefulnessofauto-encodervariantsasfeaturelearnersforsupervisedlearningcandirectlybeassessedbyperformingsupervisedlearningexperimentswithunsupervisedpre-training,whathasremaineduntilrecentlyratherunclearistheinterpretationofthesealgorithmsintheco

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。