资源描述:
《信号与系统ppt电子教案第三章离散系统的时域分析课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章离散系统的时域分析3.1LTI离散系统的响应一、差分与差分方程二、差分方程的经典解三、零输入响应和零状态响应3.2单位序列响应和阶跃响应一、单位序列响应二、阶跃响应3.3卷积和一、序列分解与卷积和二、卷积的图解三、不进位乘法四、卷积和的性质点击目录,进入相关章节第三章离散系统的时域分析3.1LTI离散系统的响应一、差分与差分方程设有序列f(k),则…,f(k+2),f(k+1),…,f(k-1),f(k-2)…等称为f(k)的移位序列。仿照连续信号的微分运算,定义离散信号的差分运算。1.差分运算离散信号的变化率有两种表示形式:3.1LTI离散系统的响应(1)一阶前向差
2、分定义:f(k)=f(k+1)–f(k)(2)一阶后向差分定义:f(k)=f(k)–f(k–1)式中,和称为差分算子,无原则区别。本书主要用后向差分,简称为差分。(3)差分的线性性质:[af1(k)+bf2(k)]=af1(k)+bf2(k)(4)二阶差分定义:2f(k)=[f(k)]=[f(k)–f(k-1)]=f(k)–f(k-1)=f(k)–f(k-1)–[f(k-1)–f(k-2)]=f(k)–2f(k-1)+f(k-2)(5)m阶差分:mf(k)=f(k)+b1f(k-1)+…+bmf(k-m)因此,可定义:3.1LTI离散系统的响应2
3、.差分方程包含未知序列y(k)及其各阶差分的方程式称为差分方程。将差分展开为移位序列,得一般形式y(k)+an-1y(k-1)+…+a0y(k-n)=bmf(k)+…+b0f(k-m)差分方程本质上是递推的代数方程,若已知初始条件和激励,利用迭代法可求得其数值解。例:若描述某系统的差分方程为y(k)+3y(k–1)+2y(k–2)=f(k)已知初始条件y(0)=0,y(1)=2,激励f(k)=2kε(k),求y(k)。解:y(k)=–3y(k–1)–2y(k–2)+f(k)y(2)=–3y(1)–2y(0)+f(2)=–2y(3)=–3y(2)–2y(1)+f(3)=10…
4、…一般不易得到解析形式的(闭合)解。3.1LTI离散系统的响应二、差分方程的经典解y(k)+an-1y(k-1)+…+a0y(k-n)=bmf(k)+…+b0f(k-m)与微分方程经典解类似,y(k)=yh(k)+yp(k)1.齐次解yh(k)齐次方程y(k)+an-1y(k-1)+…+a0y(k-n)=0其特征方程为1+an-1λ–1+…+a0λ–n=0,即λn+an-1λn–1+…+a0=0其根λi(i=1,2,…,n)称为差分方程的特征根。齐次解的形式取决于特征根。当特征根λ为单根时,齐次解yn(k)形式为:Cλk当特征根λ为r重根时,齐次解yn(k)形式为:(Cr-
5、1kr-1+Cr-2kr-2+…+C1k+C0)λk3.1LTI离散系统的响应2.特解yp(k):特解的形式与激励的形式雷同(r≥1)。(1)激励f(k)=km(m≥0)①所有特征根均不等于1时;yp(k)=Pmkm+…+P1k+P0②有r重等于1的特征根时;yp(k)=kr[Pmkm+…+P1k+P0](2)激励f(k)=ak①当a不等于特征根时;yp(k)=Pak②当a是r重特征根时;yp(k)=(Prkr+Pr-1kr-1+…+P1k+P0)ak(3)激励f(k)=cos(βk)或sin(βk)且所有特征根均不等于e±jβ;yp(k)=Pcos(βk)+Qsin(βk
6、)例:若描述某系统的差分方程为y(k)+4y(k–1)+4y(k–2)=f(k)已知初始条件y(0)=0,y(1)=–1;激励f(k)=2k,k≥0。求方程的全解。解:特征方程为λ2+4λ+4=0可解得特征根λ1=λ2=–2,其齐次解yh(k)=(C1k+C2)(–2)k特解为yp(k)=P(2)k,k≥0代入差分方程得P(2)k+4P(2)k–1+4P(2)k–2=f(k)=2k,解得P=1/4所以得特解:yp(k)=2k–2,k≥0故全解为y(k)=yh+yp=(C1k+C2)(–2)k+2k–2,k≥0代入初始条件解得C1=1,C2=–1/43.1LTI离散系统的响应
7、3.1LTI离散系统的响应三、零输入响应和零状态响应y(k)=yx(k)+yf(k),也可以分别用经典法求解。y(j)=yx(j)+yf(j),j=0,1,2,…,n–1设激励f(k)在k=0时接入系统,通常以y(–1),y(–2),…,y(–n)描述系统的初始状态。yf(–1)=yf(–2)=…=yf(–n)=0所以y(–1)=yx(–1),y(–2)=yx(–2),…,y(–n)=yx(–n)然后利用迭代法分别求得零输入响应和零状态响应的初始值yx(j)和yf(j)(j=0,1,2,…,n–1)3.1LTI离散