实数_知识点+题型归纳

实数_知识点+题型归纳

ID:33145000

大小:229.00 KB

页数:7页

时间:2019-02-21

实数_知识点+题型归纳_第1页
实数_知识点+题型归纳_第2页
实数_知识点+题型归纳_第3页
实数_知识点+题型归纳_第4页
实数_知识点+题型归纳_第5页
资源描述:

《实数_知识点+题型归纳》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第六章实数知识讲解+题型归纳l知识讲解一、实数的组成1、实数又可分为正实数,零,负实数2.数轴:数轴的三要素——原点、正方向和单位长度。数轴上的点与实数一一对应二、相反数、绝对值、倒数1.相反数:只有符号不同的两个数互为相反数。数a的相反数是-a。正数的相反数是负数,负数的相反数是正数,零的相反数是零.性质:互为相反数的两个数之和为0。2.绝对值:表示点到原点的距离,数a的绝对值为3.倒数:乘积为1的两个数互为倒数。非0实数a的倒数为.0没有倒数。4.相反数是它本身的数只有0;绝对值是它本身的数是非负数(0

2、和正数);倒数是它本身的数是±1.三、平方根与立方根1.平方根:如果一个数的平方等于a,这个数叫做a的平方根。数a的平方根记作(a>=0)特性:一个正数有两个平方根,它们互为相反数,零的平方根还是零。负数没有平方根。正数a的正的平方根也叫做a的算术平方根,零的算术平方根还是零。开平方:求一个数的平方根的运算,叫做开平方。2.立方根:如果一个数的立方等于a,则称这个数为a立方根。数a的立方根用表示。任何数都有立方根,一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零。开立方:求一个数的立方根(

3、三次方根)的运算,叫做开立方。四、实数的运算有理数的加法法则:a)同号两数相加,取相同的符号,并把绝对值相加;b)异号两数相加。绝对值相等时和为0;绝对值不相等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.任何数与零相加等于原数。2.有理数的减法法则:减去一个数等于加上这个数的相反数。3.乘法法则:a)两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.b)几个不为0的有理数相乘,积的符号由负因数的个数决定,当负因数的个数为奇数时,积为负,为偶数,积为正c)几个数相乘,只要有一

4、个因数为0,积就为04.有理数除法法则:a)两个有理数相除(除数不为0)同号得正,异号得负,并把绝对值相除。0除以任何非0实数都得0。b)除以一个数等于乘以这个数的倒数。5.有理数的乘方:在an中,a叫底数,n叫指数a)正数的任何次幂都是正数;负数的偶次幂是正数,奇次幂是负数;0的任何次幂都是0b)a0=1(a不等于0)6.有理数的运算顺序:a)同级运算,先左后右b)混合运算,先算括号内的,再乘方、开方,接着算乘除,最后是加减。五·实数大小比较的方法1)数轴法:数轴上右边的点表示的数总大于左边的点表示的数2

5、)比差法:若a-b>0则a>b;若a-b<0则a1则a>b;a/b<1则a1则abC.一正一负时,正数>负数4)平方法:a、b均为正数时,若a2>b2,则有a>b;均为负数时相反5)倒数法:两个实数,倒数大的反而小(不论正负)l题型归纳l经典例题类型一.有关概念的识别  1.下面几个数:0.23,1.010010001…,,3π,,,其中,无理数的个数有()  A、1   B、2   

6、C、3   D、4  解析:本题主要考察对无理数概念的理解和应用,其中,1.010010001…,3π,是无理数  故选C  举一反三:  【变式1】下列说法中正确的是()  A、的平方根是±3 B、1的立方根是±1 C、=±1 D、是5的平方根的相反数  【答案】本题主要考察平方根、算术平方根、立方根的概念,      ∵=9,9的平方根是±3,∴A正确.      ∵1的立方根是1,=1,是5的平方根,∴B、C、D都不正确.  【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方

7、形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()                   A、1   B、1.4   C、   D、  【答案】本题考察了数轴上的点与全体实数的一一对应的关系.∵正方形的边长为1,对角线为,由圆的定义知

8、AO

9、=,∴A表示数为,故选C.  【变式3】  【答案】∵π=3.1415…,∴9<3π<10      因此3π-9>0,3π-10<0      ∴类型二.计算类型题  2.设,则下列结论正确的是()  A.      B.  C.      D.  解析:(

10、估算)因为,所以选B  举一反三:  【变式1】1)1.25的算术平方根是__________;平方根是__________.2)-27立方根是__________.3)___________,___________,___________.  【答案】1);.2)-3.3),,  【变式2】求下列各式中的  (1)   (2)    (3)  【答案】(1)(2)x=4或x=-2(3)x=-4类型三.数形结合 

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。