欢迎来到天天文库
浏览记录
ID:32063095
大小:877.25 KB
页数:31页
时间:2019-01-31
《解非对称线性系统的混合bicr法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、广西大学硕士学位论文(2010)解非对称线性系统的混舍BiCR法manynumericalexperiments,CGSshowsgoodperformance,however,itoftenhasirreg-ularandoscillatoryconvergencebehaviorsf8,171.ManynumericalexperimentsshowthatBiCGSTABiSfasteranditsconvergencebehavioriSmoresmooththanCGS『18,271.BasedontheBiCGSTA
2、B,M.H.GutknechtproposedBiCGSTAB2f151thatisexplainedasthecombinationofBiCGandGMRES(2)『91.G.L.G.SleijpenandD.R.FokkemaproposedBiCGSTAB(L)『181thatisexplainedasthecombinationofBiCGandGMRES(L)『9,121.However,thechoiceofLisdifficultforsolvingrealisticproblems.Astheextension
3、ofCRmethod,Bi-ConjugateResidual(BiCR)methodproposedby【19,26】hasbeenreportedthatresidualnormtendstoconvergefasterandoscillationissmallerthantheBiCGmethod【271.BasedontheBiCRmethod,andmotivatedbythetechniqueofhybridBiCGmethod,weproposehybridBiCRmethod.Wewillgiveanunifie
4、dwaytoderiveaclassofhybridBiCRmethods.AndbYintroducingathree-termrecurrencepolynomial.ahybridBiCRmethodisproposed,wecallitGeneralizedhybridBiCRmethod(GhBCR).PrehminarynumericalexperimentsshowthatOurhybridBiCRmethodssl'eeffectiveinmanysituations.Thispaperisorganizedas
5、follows:inthenextchapter,wewillintroducerelevantpre-hminaries,involvingsomebasicdefinitions,KrylovsubspacemethodandbiconjugateA-orthogonalization.Inchapter3,hybridBiCRmethodisproposed.Thederivationoftherecurrencecoefficientsandconstructionofstandardpolynomialwillbegi
6、ven.Withthestandardpolynomial,aGeneralizedhybridBiCRmethod(GhBCR)willbegiven.TheconclusionwiUbegiveninchapter4.2广西大学硕士学位论文(20lO)解非对称线性系统的混合BiCR法Chapter2.Preliminaries2.1.Somebasicdefinitions【2】2(1)Innerproduct:Ifa,b∈/T',thentheinnerproduct(a,b)ofaandbhas:(a,b)=∑:1bia
7、i.Propertiesofinnerproduct:(a,b)=(b,a);(a+b,c)=(n,c)+(b,c),whereC∈舻;(ka,b)=k(a,6),where七∈R.(2)Symmetricmatrix:IfCisthetranspositionofmatrixA,thenC=AT令勺=%.IfmatrixAissymmetric,thenA=AT;IfmatrixAisnonsymmetric,thenA≠AT.(3)Subspace:Givevectorsal,⋯,an∈舻,thesetofalllinear
8、combinationsofthevectorsnl,⋯,anisasubspaceexplainedasthespan{al,⋯,on),flspan{al,⋯,凸n)={∑j=1%%:%∈R】.(4)Independence:Ifasetofvectors{
此文档下载收益归作者所有