苏科版二次函数图象与性质.doc

苏科版二次函数图象与性质.doc

ID:31842460

大小:414.00 KB

页数:12页

时间:2019-01-21

苏科版二次函数图象与性质.doc_第1页
苏科版二次函数图象与性质.doc_第2页
苏科版二次函数图象与性质.doc_第3页
苏科版二次函数图象与性质.doc_第4页
苏科版二次函数图象与性质.doc_第5页
资源描述:

《苏科版二次函数图象与性质.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、6.2二次函数的图象与性质(1)[教学目标]会用描点法画出二次函数的图象,概括出图象的特点及函数的性质.[教学过程][新课引入]我们已经知道,一次函数,反比例函数的图象分别是、,那么二次函数的图象是什么呢?(1)描点法画函数的图象前,想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?(2)观察函数的图象,你能得出什么结论?[例题精讲]例1.在同一直角坐标系中,画出下列函数的图象,并指出它们有何共同点?有何不同点?(1)(2)解列表x…-3-2-10123……188202818……-18

2、-8-20-2-8-18…分别描点、连线,画出这两个函数的图象,这两个函数的图象都是抛物线,如图26.2.1.共同点:都以y轴为对称轴,顶点都在坐标原点.不同点:的图象开口向上,顶点是抛物线的最低点,在对称轴的左边,曲线自左向右下降;在对称轴的右边,曲线自左向右上升.的图象开口向下,顶点是抛物线的最高点,在对称轴的左边,曲线自左向右上升;在对称轴的右边,曲线自左向右下降.回顾与反思在列表、描点时,要注意合理灵活地取值以及图形的对称性,因为图象是抛物线,因此,要用平滑曲线按自变量从小到大或从大到小的顺序连接.例2.已

3、知是二次函数,且当时,y随x的增大而增大.(1)求k的值;(2)求顶点坐标和对称轴.解(1)由题意,得,解得k=2.(2)二次函数为,则顶点坐标为(0,0),对称轴为y轴.例3.已知正方形周长为Ccm,面积为Scm2.(1)求S和C之间的函数关系式,并画出图象;(2)根据图象,求出S=1cm2时,正方形的周长;(3)根据图象,求出C取何值时,S≥4cm2.分析此题是二次函数实际应用问题,解这类问题时要注意自变量的取值范围;画图象时,自变量C的取值应在取值范围内.解(1)由题意,得.列表:C2468…14…描点、连线

4、,图象如图26.2.2.(2)根据图象得S=1cm2时,正方形的周长是4cm.(3)根据图象得,当C≥8cm时,S≥4cm2.回顾与反思(1)此图象原点处为空心点.(2)横轴、纵轴字母应为题中的字母C、S,不要习惯地写成x、y.(3)在自变量取值范围内,图象为抛物线的一部分.[当堂课内练习]1.在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标.(1)(2)(3)2.(1)函数的开口,对称轴是,顶点坐标是;(2)函数的开口,对称轴是,顶点坐标是.3.已知等边三角形的边长为2x,请将此

5、三角形的面积S表示成x的函数,并画出图象的草图.6.2二次函数的图象与性质(2)[教学目标]会画出这类函数的图象,通过比较,了解这类函数的性质.[教学过程][例题精讲]例1.在同一直角坐标系中,画出函数与的图象.解列表.x…-3-2-10123……188202818……20104241020…描点、连线,画出这两个函数的图象,如图26.2.3所示.回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?探索观察这两个函数,它们的开口方向、对称轴和顶点坐标

6、有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?例2.在同一直角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线.解列表.x…-3-2-10123……-8-3010-3-8……-10-5-2-1-2-5-10…描点、连线,画出这两个函数的图象,如图26.2.4所示.可以看出,抛物线是由抛物线向下平移两个单位得到的.回顾与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的.探索如果要得到抛物线,应将抛物线作怎样的平移?回顾与反思(a、k是常数,a≠0)的图象的开

7、口方向、对称轴、顶点坐标归纳如下:开口方向对称轴顶点坐标[当堂课内练习]1.在同一直角坐标系中,画出下列二次函数的图象:,,.观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.3.函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.6.2二次函数的图象与性质(3)[教学目标]会画出这类函数的图象,通过比较,了解这类函数的性质.[教学过程][新课引入

8、]我们已经了解到,函数的图象,可以由函数的图象上下平移所得,那么函数的图象,是否也可以由函数平移而得呢?画图试一试,你能从中发现什么规律吗?[例题精讲]例1.在同一直角坐标系中,画出下列函数的图象.,,,并指出它们的开口方向、对称轴和顶点坐标.解列表.x…-3-2-10123……202……028……820…描点、连线,画出这三个函数的图象,如图26.2.5所

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。