欢迎来到天天文库
浏览记录
ID:31731428
大小:319.77 KB
页数:11页
时间:2019-01-17
《第二章逆命题和逆定理同步练习含答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.5逆命题和逆定理同步练习【课堂训练】1.下列命题中,假命题是()A.两点之间,线段最短B.角平分线上的点到这个角的两边的距离相等C.两组对边分别平行的四边形是平行四边形D.对角线相等的四边形是矩形2.下列命题中正确的是()A.矩形的对角线相互垂直B.菱形的对角线相等C.平行四边形是轴对称图形D.等腰梯形的对角线相等3.分析下列命题:①四边形的地砖能镶嵌(密铺)地面;②不同时刻的太阳光照射同一物体,则其影长都是相等的;③若在正方形纸片四个角剪去的小正方形边长越大,则所制作的无盖长方体形盒子的容积越大.其中真命题的个数是()A.3 B.2C.1D.04.在
2、下列命题中,是真命题的是( )A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形5.已知下列命题:①若,则;②若,则;③角的平分线上的点到角的两边的距离相等;④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个6.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是个.21cnjy.com7.下列命题中,正确命题的个数为()(1)若样本数据3、6
3、、、4、2的平均数是4,则其方差为2(2)“相等的角是对顶角”的逆命题11(3)对角线互相垂直的四边形是菱形(4)若二次函数图象上有三个点,(),,则A.1个B.3个C.2个D.4个8.已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:.【课后训练】1.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做________.21世纪教育网版权所有2.如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的________,这两个定理叫做_________.
4、21·3.每个命题都有它的________,但每个真命题的逆命题不一定是真命题.4.线段垂直平分线性质定理的逆定理是_____________________.5.命题“对顶角相等”的逆命题是_____________________,是_____命题.6.下列说法中,正确的是()A.每一个命题都有逆命题B.假命题的逆命题一定是假命题C.每一个定理都有逆定理D.假命题没有逆命题7.下列命题的逆命题为真命题的是()A.如果a=b,那么a2=b2B.平行四边形是中心对称图形C.两组对角分别相等的四边形是平行四边形D.内错角相等8.下列定理中,有逆定理的是()A
5、.四边形的内角和等于360°B.同角的余角相等C.全等三角形对应角相等D.在一个三角形中,等边对等角9.写出下面命题的逆命题,并判断其真假.真命题真假性逆命题真假性(1)如果x=2,那么(x-2)=0(2)两个三角形全等则对应边相等(3)在一个三角形中,等边对等角(4)等腰三角形是等边三角形(5)同旁内角互补1110.写出下列命题的逆命题,并判断逆命题的真假.如果是真命题,请给予证明;如果是假命题,请举反例说明.21教育网(1)有两边上的高相等的三角形是等腰三角形.(2)三角形的中位线平行于第三边.11.写出符合下列条件的一个原命题:(1)原命题和逆命题都
6、是真命题.(2)原命题是假命题,但逆命题是真命题.(3)原命题是真命题,但逆命题是假命题.(4)原命题和逆命题都是假命题.12.已知在四边形ABCD中,对角线AC与BD相交于点O,①AB∥CD,②AO=CO,③,AD=BC,④∠ABC=∠ADC.(1)请从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为真命题,请对你所构造的一个真命题给予证明.-m(2)能否从以上条件中选取两个作为命题的条件,结论为四边形ABCD是平行四边形,并使构成的命题为假命题?若能,请写出一个满足条件的假命题,并举反例说明.2·1·c·n·j·y1
7、1参考答案1.答案:D2.答案:D3.答案:C4.答案:C5.答案:B6.答案:47.答案:B8.答案:如果一个平行四边形是菱形,那么这个平行四边形的两条对角线互相垂直参考答案:1.互逆命题2.逆定理,互逆定理3.逆命题4.到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上5.如果两个角相等,那么它们是对顶角;假6.A7.C8.D9.(1)真,如果x(x-2)=0,那么x=2;假(2)真,三边对应相等的两个三角形全等;真(3)真,在一个三角形中,等角对等边;真(4)真,等边三角形是等腰三角形;假(5)假,如果两个角互补,那么这两个角是同旁内角;假
8、10.(1)等腰三角形两腰上的高相等,是真命题,证明略(2)平行于
此文档下载收益归作者所有