欢迎来到天天文库
浏览记录
ID:31525461
大小:208.00 KB
页数:7页
时间:2019-01-12
《高中数学 第三讲 柯西不等式与排序不等式 三 排序不等式同步配套教学案 新人教a版选修4-5》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、三排序不等式对应学生用书P351.顺序和、乱序和、反序和设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实数,c1,c2,…,cn为b1,b2,…,bn的任一排列,称a1b1+a2b2+…+anbn为这两个实数组的顺序积之和(简称顺序和),称a1bn+a2bn-1+…+anb1为这两个实数组的反序积之和(简称反序和).称a1c1+a2c2+…+ancn为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序原理,又称为排序不等式)设a1≤a2≤…≤an,b1≤b2≤…≤bn为两组实数,c1,c2,…,cn为b1
2、,b2,…,bn的任一排列,则有a1bn+a2bn-1+…+anb1≤a1c1+a2c2+…+ancn≤a1b1+a2b2+…+anbn,等号成立(反序和等于顺序和)⇔a1=a2=…=an或b1=b2=…=bn.排序原理可简记作:反序和≤乱序和≤顺序和.[说明]排序不等式也可以理解为两实数序列同向单调时,所得两两乘积之和最大;反向单调(一增一减)时,所得两两乘积之和最小.对应学生用书P35[例1]已知a,b,c为正数,且a≥b≥c,求证:++≥++.[思路点拨]分析题目中已明确a≥b≥c,所以解答本题时可直接构造两个数组,再用排序不等式
3、证明即可.[证明]∵a≥b>0,于是≤,非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对百联东方商厦有限公司工作的高度重视和支持。又c>0,从而≥,同理≥,从而≥≥.又由于顺序和不小于乱序和,故可得++≥++=++≥++=++=++.所以原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<,求证:sinαcosβ+sinβcosγ+sinγ·cosα>(sin2α+
4、sin2β+sin2γ).证明:∵0<α<β<γ<,且y=sinx在为增函数,y=cosx在为减函数,∴0cosβ>cosγ>0.∴sinαcosβ+sinβcosγ+sinγcosα>sinαcosα+sinβcosβ+sinγcosγ=(sin2α+sin2β+sin2γ).2.设x≥1,求证:1+x+x2+…+x2n≥(2n+1)xn.证明:∵x≥1,∴1≤x≤x2≤……≤xn.由排序原理得12+x2+x4+…+x2n非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的
5、监督,也是对我个人的关心和爱护,更是对百联东方商厦有限公司工作的高度重视和支持。≥1·xn+x·xn-1+…+xn-1·x+xn·1即1+x2+x4+…+x2nn≥(n+1)xn.①又因为x,x2,…,xn,1为1,x,x2,…,xn的一个排列由排序原理得:1·x+x·x2+…+xn-1·xn+xn·1≥1·xn+x·xn-1+…+xn-1·x+xn·1得x+x3+…+x2n-1+xn≥(n+1)xn②将①②相加得1+x+x2+…+x2n≥(2n+1)xn.用排序不等式证明不等式(对所证不等式中的字母大小顺序作出假设)[例2]在△ABC
6、中,试证:≤[思路点拨]可构造△ABC的边和角的有序数列,应用排序不等式来证明.[证明]不妨设a≤b≤c,于是A≤B≤C.由排序不等式,得aA+bB+cC≥aA+bB+cC,aA+bB+cC≥bA+cB+aC,aA+bB+cC≥cA+aB+bC.相加,得3(aA+bB+cC)≥(a+b+c)(A+B+C)=π(a+b+c),得≥.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设a,b,c都是正数,求证:++≥a+b+c.证明:由题意不妨设a≥b≥c>0
7、,非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对百联东方商厦有限公司工作的高度重视和支持。由不等式的单调性,知ab≥ac≥bc,≥≥.由排序不等式,知ab×+ac×+bc×≥ab×+ac×+bc×,即所证不等式++≥a+b+c成立.4.设a1,a2,…,an是1,2,…,n的一个排列,求证:++…+≤++…+.证明:设b1,b2,…,bn-1是a1,a2,…,an-1的一个排列,且b18、2<…>…>且b1≥1,b2≥2,…,bn-1≥n-1,c1≤2,c2≤3,…,cn-1≤n.利用排序不等式,有++…+≥++…+≥++…+.∴原不等式成立.对应学生用书P361.有一有序数
8、2<…>…>且b1≥1,b2≥2,…,bn-1≥n-1,c1≤2,c2≤3,…,cn-1≤n.利用排序不等式,有++…+≥++…+≥++…+.∴原不等式成立.对应学生用书P361.有一有序数
此文档下载收益归作者所有