欢迎来到天天文库
浏览记录
ID:31524027
大小:250.00 KB
页数:8页
时间:2019-01-12
《高中数学 第一章 算法初步 1_3 算法案例学案 新人教a版必修3》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.3算法案例[学习目标] 1.理解辗转相除法与更相减损术的含义,了解其执行过程.2.理解秦九韶算法的计算过程,并了解它提高计算效率的实质.3.理解进位制的概念,能进行不同进位制间的转化.4.了解进位制的程序框图和程序.知识点一 辗转相除法与更相减损术1.辗转相除法(1)辗转相除法,又叫欧几里得算法,是一种求两个正整数的最大公约数的古老而有效的算法.(2)辗转相除法的算法步骤第一步,给定两个正整数m,n.第二步,计算m除以n所得的余数r.第三步,m=n,n=r.第四步,若r=0,则m,n的最大公约数等于m;否则,返回第二步.2.更相减损术第一步,任意给定两个正整数,判断它们是否都是
2、偶数.若是,用2约简;若不是,执行第二步.第二步,以较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)或这个数与约简的数的乘积就是所求的最大公约数.3.辗转相除法和更相减损术的区别与联系:名称辗转相除法更相减损术区别(1)以除法为主;(2)两个整数的差值较大时,运算次数较少;(3)相除,余数为0时得结果(1)以减法为主;(2)两个整数的差值较大时,运算次数较多;(3)相减,减数与差相等时得结果;(4)相减前要进行是否都是偶数的判断联系(1)都是求两个正整数最大公约数的方法;(2)二者的实质都是递推的过程;(3)二
3、者都要用循环结构来实现思考 实际应用更相减损术时要做的第一步工作是什么?答 先判断a,b是否为偶数,若是,都除以2再进行.非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。知识点二 秦九韶算法1.秦九韶算法简介(1)秦九韶算法要解决的问题是求多项式的值.(2)秦九韶算法的特点:通过一次式的反复计算,逐步得到高次多项式的值,即将一个n次多项式的求值问题归结为重复计算n个一次多项式的值的问题.(3)秦九韶算法的原理:将f(x)=anxn+an-1xn-1+…+a1x+a0改写为:f
4、(x)=(anxn-1+an-1xn-2+…+a1)x+a0=((anxn-2+an-1xn-3+…+a2)x+a1)x+a0=…先计算最内层括号内一次多项式的值,即v1=anx+an-1,再由内向外逐层计算一次多项式vk的值.2.秦九韶算法的操作方法(1)算法步骤如下:第一步,输入多项式次数n、最高次项的系数an和x的值.第二步,将v的值初始化为an,将i的值初始化为n-1.第三步,输入i次项的系数ai.第四步,v=vx+ai,i=i-1.第五步,判断i是否大于或等于0.若是,则返回第三步;否则,输出多项式的值v.(2)程序框图如图所示.(3)程序如下:非常感谢上级领导对我的信任
5、,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。INPUT “n=”;nINPUT “an=”;aINPUT “x=”;xv=ai=n-1WHILE i>=0 PRINT “i=”;i INPUT “ai=”;a v=v*x+a i=i-1WENDPRINT vEND知识点三 进位制1.进位制的概念进位制是为了计数和运算方便而约定的记数系统,约定“满几进一”就是几进制,几进制的基数(大于1的整数)就是几.2.常见的进位制(1)二进制:①只使用0和1两个数学;②满二进一,即1+1=10(2).(2)八进
6、制:①使用0,1,2,3,4,5,6,7这八个不同数学;②满八进一,即7+1=10(8).(3)十六进制:①使用0~9十个数字和A~F表示10~15;②F+1=10(16)思考 任何进位制中都要用到的数字是什么?答 0和1.题型一 求两个正整数的最大公约数例1 分别用辗转相除法和更相减损术求261和319的最大公约数.非常感谢上级领导对我的信任,这次安排我向股份公司述职,既是对我履行职责的监督,也是对我个人的关心和爱护,更是对**百联东方商厦有限公司工作的高度重视和支持。解 方法一 (辗转相除法)319÷261=1(余58),261÷58=4(余29),58÷29=2(余0),所以
7、319与261的最大公约数为29.方法二 (更相减损术)319-261=58,261-58=203,203-58=145,145-58=87,87-58=29,58-29=29,29-29=0,所以319与261的最大公约数是29.反思与感悟 (1)利用辗转相除法求给定的两个数的最大公约数,即利用带余除法,用数对中较大的数除以较小的数,若余数不为零,则将余数和较小的数构成新的数对,再利用带余除法,直到大数被小数除尽,则这时的较小数就是原来两个数的最大公约数.(2)利用
此文档下载收益归作者所有