高中数学第二章圆锥曲线与方程2_2_2_2双曲线方程及性质的应用高效测评新人教a版选修1_1

高中数学第二章圆锥曲线与方程2_2_2_2双曲线方程及性质的应用高效测评新人教a版选修1_1

ID:31462256

大小:64.00 KB

页数:5页

时间:2019-01-10

高中数学第二章圆锥曲线与方程2_2_2_2双曲线方程及性质的应用高效测评新人教a版选修1_1_第1页
高中数学第二章圆锥曲线与方程2_2_2_2双曲线方程及性质的应用高效测评新人教a版选修1_1_第2页
高中数学第二章圆锥曲线与方程2_2_2_2双曲线方程及性质的应用高效测评新人教a版选修1_1_第3页
高中数学第二章圆锥曲线与方程2_2_2_2双曲线方程及性质的应用高效测评新人教a版选修1_1_第4页
高中数学第二章圆锥曲线与方程2_2_2_2双曲线方程及性质的应用高效测评新人教a版选修1_1_第5页
资源描述:

《高中数学第二章圆锥曲线与方程2_2_2_2双曲线方程及性质的应用高效测评新人教a版选修1_1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求2016-2017学年高中数学第二章圆锥曲线与方程2.2.2.2双曲线方程及性质的应用高效测评新人教A版选修1-1一、选择题(每小题5分,共20分)1.过点(0,1)与双曲线x2-y2=1仅有一个公共点的直线共有(  )A.0条         B.2条C.4条D.6条解析: 由题意知直线的斜率存在,设直线方程为y=kx+1代入双曲线方程得(1-k2)x2-

2、2kx-2=0当1-k2=0时,方程组有一解,直线与双曲线仅有一个公共点.当1-k2≠0,Δ=4k2-4(1-k2)×(-2)=0.即k=±时,方程组有一解,直线与双曲线仅有一个公共点.综上,有4条直线满足题意.答案: C2.如图,ax-y+b=0和bx2+ay2=ab(ab≠0)所表示的曲线只可能是(  )解析: ax-y+b=0可化为y=ax+b,bx2+ay2=ab可化为+=1.若ab>0,则A中曲线错误,B中曲线不存在.若ab<0,则D中曲线错误,故选C.答案: C3.已知双曲线E的中心为原点,F

3、(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12,-15),则E的方程为(  )A.-=1B.-=1C.-=1D.-=1解析: 设双曲线的标准方程为-=1(a>0,b>0),由题意知c=3,a2+b2=9,设A(x1,y1),B(x2,y2)则有:两式作差得:===,配合各任课老师,激发学生的学习兴趣,挖掘他们的学习动力,在学生中培养苦学精神,发扬拼搏精神,形成以勤学为荣的班风;充分利用学校开展的“不比基础比进步,不比聪明比勤奋”以及具有储能特色的“当月之星”的评选活动,积

4、极探索素质教育的新途径在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求又AB的斜率是=1,所以将4b2=5a2代入a2+b2=9得a2=4,b2=5,所以双曲线标准方程是-=1,故选B.答案: B4.已知双曲线-=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为(  )A.-=1B.-=1C.-=1D.-=1解析: ∵双曲线-=1的渐

5、近线方程为y=±x,圆C的标准方程为(x-3)2+y2=4,∴圆心为C(3,0).又渐近线方程与圆C相切,即直线bx-ay=0与圆C相切,∴=2,∴5b2=4a2.①又∵-=1的右焦点F2(,0)为圆心C(3,0),∴a2+b2=9.②由①②得a2=5,b2=4.∴双曲线的标准方程为-=1.答案: A二、填空题(每小题5分,共10分)5.若直线y=kx+2与双曲线x2-y2=6的右支交于不同的两点,那么k的取值范围是________.解析: x2-(kx+2)2=6,(1-k2)x2-4kx-10=0有两

6、个不同的正根.则得-

7、为________.解析: 设P(x1,y1)、Q(x2,y2),由题意得则(b-a)x2+2ax-a-ab=0.所以x1+x2=-,x1x2=,y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2,根据·=0,得x1x2+y1y2=0,即1-(x1+x2)+2x1x2=0,因此1++2×=0,化简得=2,即-=2.答案: 2三、解答题(每小题10分,共20分)7.直线y=kx+1与双曲线3x2-y2=1相交于A,B两点,当k为何值时,A,B在双曲线的同一支上?当k为何值时,A,B分别在双曲线

8、的两支上?解析: 把y=kx+1代入3x2-y2=1,整理,得(3-k2)x2-2kx-2=0.设A(x1,y1),B(x2,y2),要使直线与双曲线有两个交点,则需满足:k≠±,且Δ=24-4k2>0.由Δ>0,解得-<k<,所以当-<k<,且k≠±时,一元二次方程有两解,直线与双曲线有两个交点.若A,B在双曲线的同一支上,须x1x2=>0,解得k<-或k>;若A,B分别在双曲线的两支上,须x1x2=<0,解得-<k<.所以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。