资源描述:
《高三数学二轮复习 专题突破 专题七 概率与统计 第2讲 统计及统计案例课件 文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2讲 统计及统计案例热点突破高考导航备选例题阅卷评析高考导航演真题·明备考高考体验1.(2016·全国Ⅲ卷,文4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是( )(A)各月的平均最低气温都在0℃以上(B)七月的平均温差比一月的平均温差大(C)三月和十一月的平均最高气温基本相同(D)平均最高气温高于20℃的月份有5个解析:观察雷达图,易知A,B,C都正确.
2、故选D.D2.(2015·全国Ⅱ卷,文3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )(A)逐年比较,2008年减少二氧化硫排放量的效果最显著(B)2007年我国治理二氧化硫排放显现成效(C)2006年以来我国二氧化硫年排放量呈减少趋势(D)2006年以来我国二氧化硫年排放量与年份正相关解析:结合图形可知,2007年与2008年二氧化硫的排放量差距明显,显然2008年减少二氧化硫排放量的效果最显著;2006年二氧化硫的排放量最高,从200
3、6年开始二氧化硫的排放量开始整体呈下降趋势.显然A,B,C正确,不正确的是D,不是正相关.D3.(2014·全国卷Ⅱ,文19)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;解:(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的
4、评分由小到大排序,排在第25,26位的是66,68,故样本中位数为=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)分别估计该市的市民对甲、乙两部门的评分高于90概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.4.(2015·全国Ⅱ卷,文18)某公
5、司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数2814106(1)作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的
6、频率分布直方图解:(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)根据用户满意度评分,将用户的满意度分为三个等级:解:(2)A地区用户的满意度等级为不满意的概率大.记CA表示事件:“A地区用户的满意度等级为不满意”;CB表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(CA)的估计值为(0.01+0.02+0.03)×10=0.6,P(CB)的
7、估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.高考感悟1.考查角度(1)对统计图(频率分布直方图与茎叶图)的考查是高考热点,这部分内容可以单独命题,也可以与概率、抽样方法.统计案例等知识综合命题,主要考查对统计图表的理解,以及从图形中获取信息的能力,利用样本估计总体的实践能力.(2)对线性回归方程的考查主要以实际问题为背景,
8、作散点图,求线性回归方程并由回归方程估计预测,有时需将非线性回归模型转换为线性回归模型解决.2.题型及难易度选择题、解答题均有.难度中低档.热点突破剖典例·促迁移热点一用样本估计总体【例1】(1)(2015·山东卷,文6)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温;②甲地该月14时的平均气温高于乙地该月14时的平均气温;③甲