北师大版八年级数学上册:第四章《一次函数》教案

北师大版八年级数学上册:第四章《一次函数》教案

ID:30033880

大小:499.50 KB

页数:12页

时间:2018-12-26

北师大版八年级数学上册:第四章《一次函数》教案_第1页
北师大版八年级数学上册:第四章《一次函数》教案_第2页
北师大版八年级数学上册:第四章《一次函数》教案_第3页
北师大版八年级数学上册:第四章《一次函数》教案_第4页
北师大版八年级数学上册:第四章《一次函数》教案_第5页
资源描述:

《北师大版八年级数学上册:第四章《一次函数》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四章 一次函数1 函 数1.了解函数产生的背景和函数的概念,能判断两个变量间的关系是否属于函数关系.2.通过对函数概念的探索,初步培养学生利用函数的观点认识现实世界的意识和能力.3.让学生主动地从事观察、操作、交流、归纳等探索活动,从而使学生形成自己对数学知识的理解和有效的学习模式.重点掌握函数的概念,会判断两个变量之间的关系是否属于函数关系.难点能把实际问题抽象概括为函数问题.一、情境导入课件出示教材第75页图4-1及相关问题,并由学生讨论完成题目.师:在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.(板书课题)二、探究

2、新知函数的相关概念.(1)课件出示教材第76页“做一做”第1题.师:层数n和物体总数y之间是什么关系?引导学生得出:只要给定层数,就能求出物体总数.(2)课件出示教材第76页“做一做”第2题.师:在关系式T=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.表示函数的方法一般有:列表法、关系式法和图象法.对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.理解函数概念时应注意:

3、(1)在某一变化过程中有两个变量x与y.(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x>0)中,当x=9时,y对应的值为3或-3,不唯一,则y不是x的函数.师:上述问题中,自变量能取哪些值?指出要根据实际问题确定自变量的取值范围.三、练习巩固教材第77页“随堂练习”.四、小结函数的概念包含以下三方面:(1)两个变量;(2)两个变量之间唯一确定的对应关系;(3)当一个变量取一个确定的值时,另一个变量有唯一的值与它对应.五、课外作业教材第77~78页习题4.1第1~4题.本节

4、课是函数学习的起始课,因此理解函数的基本思想和表达方式是本节课的重点.通过生活实例中对变量的提取,帮助学生比较深刻地领悟了函数的意义.教材安排的实际问题,旨在让学生通过直观感知,领悟相关概念,这些问题不宜单纯作为教师讲解的例题,要注意引导学生观察其中数量之间的相互关系、鼓励学生发表意见,可以根据学生交流的情况,鼓励学生举出自己熟悉的实例,穿插在几个问题的讨论之中.2 一次函数与正比例函数1.理解一次函数和正比例函数的概念,以及两者之间的关系.2.能够根据所给条件写出简单的一次函数表达式,并利用它解决实际问题.3.经历利用一次函数解决实际问题的过程,发展学生的数学应用能力.重点一次

5、函数、正比例函数的概念.会根据已知信息写出一次函数的表达式.难点一次函数知识的运用.一、情境导入师:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如弹簧的长度(在弹性限度内)与所挂物体的质量,输液时间与相应时间内水滴数目……了解这些关系,可以帮助我们更好地认识世界.函数是刻画变量之间关系的常用模型,其中最为简单的是一次函数,那么什么是一次函数?用一次函数可以解决哪些问题呢?你想了解这些吗?一起进入这节课的学习吧!二、探究新知一次函数的相关概念.(1)课件出示教材第79页“做一做”上面的题目.分析:当不挂物体时,弹簧长度为3cm,当挂1kg物体时,增加0.5cm,总长度

6、为3.5cm,增加1kg物体,即所挂物体为2kg时,弹簧又增加0.5cm,总共增加1cm,由此可见,所挂物体为xkg时,弹簧就伸长0.5xcm,则弹簧总长为原长加伸长的长度,即y=3+0.5x.(2)课件出示教材第79页“做一做”.解:①如下表所示:汽车行驶路程x/km050100150200300耗油量y/L0612182436②y=6·x.③z=60-x.若两个变量x,y间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.例如y=2x+1,y=x-1等都是一次函数.特别地,当b=0时,称y是x的正比例函数.例如,y=2x,y=-3x等都是正

7、比例函数.正比例函数是一次函数的特例,一次函数包含正比例函数.正比例函数与一次函数的关系如图所示.三、举例分析1.课件出示教材第79页例1.由学生交流讨论完成.师:两个变量之间存在函数关系,它们之间一定是一次函数或正比例函数关系吗?2.课件出示教材第80页例2.此题对于现阶段的学生有一定难度,由教师讲解.分析:一次函数y=kx+b(k,b为常数,k≠0)中,自变量的取值范围是全体实数,但是在实际问题中,要根据具体情况来确定该一次函数的自变量的取值范围.本例题的关键是确定问题当中的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。