欢迎来到天天文库
浏览记录
ID:29866161
大小:112.50 KB
页数:3页
时间:2018-12-24
《高中数学 第一章 推理与证明 1.2 综合法与分析法 综合法教案 北师大版选修2-2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、综合法一、教学目标:结合已经学过的数学实例,了解直接证明的基本方法之一:综合法;了解综合法的思考过程、特点。二、教学重点:了解综合法的思考过程、特点;难点:综合法的思考过程、特点。三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:推理合情推理(或然性推理)演绎推理(必然性推理)类比(特殊到特殊)三段论(一般到特殊)归纳(特殊到一般)演绎推理是证明数学结论、建立数学体系的重要思维过程.数学结论、证明思路的发现,主要靠合情推理.(二)引入新课引例:四边形ABCD是平行四边形,求证:AB=CD,BC=DA证连结AC,因为四边形ABCD是平行四边形,所以AB//
2、CD,BC//DA又AC=CA故AB=CD,BC=DA直接从原命题的条件逐步推得命题成立的证明方法称为直接证明,其一般形式为:本题条件已知定义已知公理本题结论已知定理在数学证明中,综合法是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,综合法表现为由因导果,它是寻求解题思路的一种基本思考方法,应用十分广泛。从已知条件出发,以已知定义、公理、定理等为依据,逐步下推,直到推出要证明的结论为止,这种证明方法叫做综合法(顺推证法)用P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论.则综合法用框图表示为:P…特点:“
3、由因导果”(三)、例题探析:例1:求证:是函数的一个周期。证明:∴由函数周期的定义可知:是函数的一个周期。例2:(韦达定理)已知和是一元二次方程的两个根。求证:。证明:由题意可知:∴例3:已知:x,y,z为互不相等的实数,且求证:证明:根据条件可得又由x,y,z为互不相等的实数,所以上式可变形为同理可得所以(四)、课堂练习:在△ABC中,三个内角A、B、C对应的边分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列,求证△ABC为等边三角形.(五)、小结:综合法的特点是:从已知看可知,逐步推向未知,其逐步推理,实际上是寻找它的必要条件。(六)、课后作业
4、:课本习题1-22,3。课本练习五、教后反思:
此文档下载收益归作者所有