高中数学 第一章 推理与证明 综合法和分析法的应用教案 北师大版选修2-2

高中数学 第一章 推理与证明 综合法和分析法的应用教案 北师大版选修2-2

ID:29644363

大小:251.56 KB

页数:2页

时间:2018-12-21

高中数学 第一章 推理与证明 综合法和分析法的应用教案 北师大版选修2-2_第1页
高中数学 第一章 推理与证明 综合法和分析法的应用教案 北师大版选修2-2_第2页
资源描述:

《高中数学 第一章 推理与证明 综合法和分析法的应用教案 北师大版选修2-2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、综合法和分析法的应用一、教学目标:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。二、教学重点:会用分析法和综合法证明问题;了解分析法和综合法的思考过程。教学难点:根据问题的特点,结合分析法和综合法的思考过程、特点,选择适当的证明方法。三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习准备1、已知“若,且,则”,试请此结论推广猜想。(答案:若,且,则)2、已知,,求证:.先完成证明→讨论:证明过程有什么特点?3、讨论:如何证明基本不等

2、式。(讨论→板演→分析思维特点:从结论出发,一步步探求结论成立的充分条件)(二)、探析新课1.探析例题①出示例1:已知a,b,c是不全相等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.分析:运用什么知识来解决?(基本不等式)→板演证明过程(注意等号的处理)→讨论:证明形式的特点②综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示:要点:顺推证法;由因导果.③出示例2:在△ABC中,三个内角A、B、C的对边

3、分别为a、b、c,且A、B、C成等差数列,a、b、c成等比数列.求证:为△ABC等边三角形.分析:从哪些已知,可以得到什么结论?如何转化三角形中边角关系?→板演证明过程→讨论:证明过程的特点.→小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)④出示例2:见练习册P11讨论:如何寻找证明思路?(从结论出发,逐步反推)⑤出示例3:见练习册P11讨论:如何寻找证明思路?(从结论与已知出发,逐步探求)⑥分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的

4、结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.框图表示:要点:逆推证法;执果索因.2、课堂练习:(1)、已知a,b,c是全不相等的正实数,求证.(2)、证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大.提示:设截面周长为l,则周长为l的圆的半径为,截面积为,周长为l的正方形边长为,截面积为,问题只需证:>.(三)、小结:综合法是从已知的P出发,得到一系列的结论,直到最后的结论是Q.运用综合法可以解决不等式、

5、数列、三角、几何、数论等相关证明问题。分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知,直到所有的已知P都成立;比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径。(四)、作业布置:1、为锐角,且,求证:.(提示:算)2、已知求证:3、练习:设x>0,y>0,证明不等式:.先讨论方法→分别运用分析法、综合法证

6、明.4、设a,b,c是的△ABC三边,S是三角形的面积,求证:.略证:正弦、余弦定理代入得:,即证:,即:,即证:(成立).五、教学反思:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。