资源描述:
《函数的单调性奇偶性周期性(1)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第2节 函数的单调性、奇偶性、周期性课时训练练题感提知能【选题明细表】知识点、方法题号单调性的判断与应用1、6、7、12、13求函数的单调区间2、8奇偶性的判断与应用3、5、10、11周期性及应用4、9、14一、选择题1.下列四个函数中,在(0,+∞)上为增函数的是( C )(A)f(x)=3-x(B)f(x)=x2-3x(C)f(x)=-(D)f(x)=-
2、x
3、解析:当x>0时,f(x)=3-x为减函数;当x∈时,f(x)=x2-3x为减函数;当x∈时,f(x)=x2-3x为增函数;当x∈(0,+∞)时,f(x)=-为增函数;当x∈(0,+∞)时,f(x)=-
4、x
5、为减
6、函数.故选C.2.函数y=的递减区间为( D )(A)(1,+∞)(B)(C)(D)解析:令g(x)=2x2-3x+1,则y=,由于g(x)在上单调递增,所以函数y=的递减区间是,故选D.3.(2013年高考广东卷)定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是( C )(A)4(B)3(C)2(D)1解析:因f(-x)=(-x)3=-x3=-f(x),所以y=x3是奇函数,f(-x)=2sin(-x)=-2sinx=-f(x),所以y=2sinx是奇函数,由函数性质知y=2x是非奇非偶函数,y=x2+1是偶函数,所以奇函数的个数是
7、2,故选C.4.已知f(x)满足f(x+4)=f(x)和f(-x)=-f(x),当x∈(0,2)时,f(x)=2x2,则f(7)等于( A )(A)-2(B)2(C)-98(D)98解析:∵f(x+4)=f(x),∴f(x)的周期T=4.又∵f(-x)=-f(x),且当x∈(0,2)时,f(x)=2x2,∴f(7)=f(2×4-1)=f(-1)=-f(1)=-2×1=-2.故选A.5.(2013河南郑州模拟)设函数f(x)=且f(x)为奇函数,则g(3)等于( D )(A)8(B)(C)-8(D)-解析:法一 由于f(x)为奇函数,故当x>0时,f(x)=-f(-x)=-
8、2-x,所以g(x)=-2-x,所以g(3)=-.故选D.法二 由题意知,g(3)=f(3)=-f(-3)=-2-3=-.故选D.6.已知函数f(x)=在R上为增函数,则a的取值范围是( B )(A)-3≤a<0(B)-3≤a≤-2(C)a≤-2(D)a<0解析:要使函数在R上是增函数则有解得-3≤a≤-2.故选B.7.(2013佛山模拟)若函数y=ax与y=-在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是( B )(A)增函数(B)减函数(C)先增后减(D)先减后增解析:由y=ax与y=-在(0,+∞)上都是减函数,知a<0,b<0,∴函数y=ax2+
9、bx的对称轴x=-<0,因此函数y=ax2+bx在(0,+∞)上为减函数.故选B.二、填空题8.函数y=lo(x2-3x+2)的单调增区间为 . 解析:令t=x2-3x+2,由x2-3x+2>0得x>2或x<1,又函数y=lot是(0,+∞)上的减函数,函数t=x2-3x+2在(2,+∞)上为增函数,在(-∞,1)上为减函数,因此函数y=lo(x2-3x+2)的单调增区间是(-∞,1).答案:(-∞,1)9.函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f(f(5))= . 解析:∵f(x+2)=,∴f(x+4)=f(x+2+2)==f
10、(x),因此函数f(x)是以4为周期的周期函数,∴f(5)=f(1)=-5,∴f(f(5))=f(-5)=f(3)==-.答案:-10.(2012年高考上海卷)已知y=f(x)+x2是奇函数,且f(1)=1,若g(x)=f(x)+2,则g(-1)= . 解析:∵y=f(x)+x2是奇函数,∴f(-1)+(-1)2=-f(1)-12,即f(-1)=-f(1)-2=-3.∴g(-1)=f(-1)+2=-3+2=-1.答案:-111.(2013吉林模拟)若f(x)=+a是奇函数,则a= . 解析:法一 由f(-x)=+a=+a=-f(x),得+a=-(+a)⇒2a=
11、-=1,故a=.法二 由题意知f(-1)+f(1)=0,即+a++a=0,解得a=.答案:三、解答题12.已知函数f(x)=-(a>0,x>0).(1)求证:f(x)在(0,+∞)上是单调递增函数;(2)若f(x)在上的值域是,求a的值.(1)证明:设x2>x1>0,则x2-x1>0,x1x2>0,∵f(x2)-f(x1)=-=-=>0,∴f(x2)>f(x1),∴f(x)在(0,+∞)上是单调递增函数.(2)解:∵f(x)在上的值域是,又f(x)在上单调递增,∴f=,f(2)=2,解得a=.13.已知函数f(x)的定义域是(