资源描述:
《多元复合函数的求导法》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、多元复合函数的求导法 在一元函数中,我们已经知道,复合函数的求导公式在求导法中所起的重要作用,对于多元函数来说也是如此。下面我们来学习多元函数的复合函数的求导公式。我们先以二元函数为例:多元复合函数的求导公式 链导公式: 设均在(x,y)处可导,函数z=F(u,v)在对应的(u,v)处有连续的一阶偏导数, 那末,复合函数在(x,y)处可导,且有链导公式: 例题:求函数的一阶偏导数 解答:令 由于
2、 而 由链导公式可得: 其中 上述公式可以推广到多元,在此不详述。 一个多元复合函数,其一阶偏导数的个数取决于此复合函数自变量的个数。在一阶偏导数的链导公式中,项数的多少取决于与此自变量有关的中间变量的个数。全导数 由二元函数z=f(u,v)和两个一元函数复合起来的函数是x的一元函数. 这时复合函数的导数就是一个一元函数的导数,称为全导数. 此时的链导公式为:
3、 例题:设z=u2v,u=cosx,v=sinx,求 解答:由全导数的链导公式得: 将u=cosx,v=sinx代入上式,得: 关于全导数的问题 全导数实际上是一元函数的导数,只是求导的过程是借助于偏导数来完成而已。多元函数的极值 在一元函数中我们看到,利用函数的导数可以求得函数的极值,从而可以解决一些最大、最小值的应用问题。多元函数也有类似的问题,这里我们只学
4、习二元函数的极值问题。二元函数极值的定义 如果在(x0,y0)的某一去心邻域内的一切点(x,y)恒有等式: f(x,y)≤f(x0,y0) 成立,那末就称函数f(x,y)在点(x0,y0)处取得极大值f(x0,y0);如果恒有等式: f(x,y)≥f(x0,y0) 成立,那末就称函数f(x,y)在点(x0,y0)处取得极小值f(x0,y0). 极大值与极小值统称极值.使函数取得极值的点(x0,y0)称为极值点.
5、 二元可导函数在(x0,y0)取得极值的条件是:. 注意:此条件只是取得极值的必要条件。 凡是使的点(x,y)称为函数f(x,y)的驻点.可导函数的极值点必为驻点,但驻点却不一定是极值点。二元函数极值判定的方法 设z=f(x,y)在(x0,y0)的某一邻域内有连续的二阶偏导数.如果,那末函数f(x,y)在(x0,y0)取得极值的条件如下表所示:△=B2-ACf(x0,y0)△<0A<0时取极大值A>0时取极小值△>0非极值△=0不定 其中 例题:求的极值。 解答:设,则 ,.
6、 . 解方程组,得驻点(1,1),(0,0). 对于驻点(1,1)有,故 B2-AC=(-3)2-6.6=-27<0,A=6>0 因此,在点(1,1)取得极小值f(1,1)=-1. 对于驻点(0,0)有,故 B2-AC=(-3)2-0.0=9>0 因此,在点(0,0)不取得极值.多元函数的最大、最小值问题 我们已经知道求一元函数极大值、极小值的步骤,对于多元函数的极大值、极小值的求解也可采
7、用同样的步骤。下面我们给出实际问题中多元函数的极大值、极小值求解步骤。如下: a):根据实际问题建立函数关系,确定其定义域; b):求出驻点; c):结合实际意义判定最大、最小值. 例题:在平面3x+4y-z=26上求一点,使它与坐标原点的距离最短。 解答:a):先建立函数关系,确定定义域 求解与原点的距离最短的问题等价于求解与原点距离的平方 最小的问题.但是P点位于所给的平面上,故z=3x+4y-26.把它
8、代入上式便得到我们所需的函数关系: ,-∞<x<+∞,-∞<y<+∞ b):求驻点 解得唯一驻点x=3,y=4.由于点P在所给平面上,故可知 z=-1 c):结合实际意义判定最大、最小值