欢迎来到天天文库
浏览记录
ID:29637975
大小:519.06 KB
页数:6页
时间:2018-12-21
《高三数学总复习 2.2 函数的性质教学案 新人教版必修1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§2.2函数的性质一、知识导学 1.函数的单调性: (1)增函数:一般地,设函数的定义域为I,如果定义域I内某个区间上任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)2、偶性: (1)奇函数:一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. (2)一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数. (3)如果函数f(x)是奇函数或偶函数,那么就说f(x)具有奇偶性. 3.函数的图像:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到平面内的一个点(x0,f(x0)),当自变量取遍函数定义域内的每一个值时,就得到一系列这样的点,所有这些点的集合(点集)组成的图形就是函数y=f(x)的图像.二、疑难知识3、导析 1.对函数单调性的理解,函数的单调性一般在函数的定义域内的某个子区间上来讨论,函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.2.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图像关于直线x=a对称的充要条件是对定4、义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图像的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 3.用列表描点法总能作出函数的图像,但是不了解函数本身的特点,就无法了解函数图像的特点,如二次函数图像是抛物线,如果不知道抛物线的顶点坐标和存在着对称轴,盲目地列表描点是很难将图像的特征描绘出来的.三、经典例题导讲[例1]判断函数的单调性.错解:是减函数错因:概念不清,导致判断错误.这是一个复合函数,而复合函数的单调性(或单调区间),仍是从基础函数的单调5、性(或单调区间)分析,但需注意内函数与外函数的单调性的变化.当然这个函数可化为,从而可判断出其单调性.正解: 令,则该函数在R上是减函数,又在R上是减函数,∴ 是增函数[例2]判断函数的奇偶性.错解:∵= ∴ ∴是偶函数错因:对函数奇偶性定义实质理解不全面.对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.正解:有意义时必须满足即函数的定义域是{|},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数[例3]判断的奇偶性.错解:∵ ∴且 所以该函数既不是奇函数也不是偶6、函数错因:对数运算公式不熟悉,或者说奇偶性的判别方法不灵活.定义中f(-x)=-f(x)f(-x)=f(x),也可改为研究f(-x)+f(x)=0,f(-x)-f(x)=0是否成立.正解:方法一:∵===-∴是奇函数 方法二:∵= ∴是奇函数[例4]函数y=的单调增区间是_________.错解:因为函数的对称轴是,图像是抛物线,开口向下,由图可知在上是增函数,所以y=的增区间是错因:在求单调性的过程中注意到了复合函数的单调性研究方法,但没有考虑到函数的单调性只能在函数的定义域内来讨论,从而忽视了函数的定义域,导致了解题的错误.正解:y=的定义域是,又在区间上增函数,在7、区间是减函数,所以y=的增区间是[例5]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,求x的取值范围.错解:∵f(x)是奇函数,∴f(x-3)<-f(x2-3)= f(3-x2),又f(x)在(-3,3)上是减函数,∴x-3>3-x2,即x2+x-6>0解得x>2或x<-3又f(x)是定义在(-3,3)上的函数,所以2<x<3错因:只考虑到奇函数与单调性,而没有正确理解函数的定义域.正解:由,故0
2、偶性: (1)奇函数:一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. (2)一般地,如果对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数. (3)如果函数f(x)是奇函数或偶函数,那么就说f(x)具有奇偶性. 3.函数的图像:将自变量的一个值x0作为横坐标,相应的函数值f(x0)作为纵坐标,就得到平面内的一个点(x0,f(x0)),当自变量取遍函数定义域内的每一个值时,就得到一系列这样的点,所有这些点的集合(点集)组成的图形就是函数y=f(x)的图像.二、疑难知识
3、导析 1.对函数单调性的理解,函数的单调性一般在函数的定义域内的某个子区间上来讨论,函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制.2.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图像关于直线x=a对称的充要条件是对定
4、义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图像的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 3.用列表描点法总能作出函数的图像,但是不了解函数本身的特点,就无法了解函数图像的特点,如二次函数图像是抛物线,如果不知道抛物线的顶点坐标和存在着对称轴,盲目地列表描点是很难将图像的特征描绘出来的.三、经典例题导讲[例1]判断函数的单调性.错解:是减函数错因:概念不清,导致判断错误.这是一个复合函数,而复合函数的单调性(或单调区间),仍是从基础函数的单调
5、性(或单调区间)分析,但需注意内函数与外函数的单调性的变化.当然这个函数可化为,从而可判断出其单调性.正解: 令,则该函数在R上是减函数,又在R上是减函数,∴ 是增函数[例2]判断函数的奇偶性.错解:∵= ∴ ∴是偶函数错因:对函数奇偶性定义实质理解不全面.对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.正解:有意义时必须满足即函数的定义域是{|},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数[例3]判断的奇偶性.错解:∵ ∴且 所以该函数既不是奇函数也不是偶
6、函数错因:对数运算公式不熟悉,或者说奇偶性的判别方法不灵活.定义中f(-x)=-f(x)f(-x)=f(x),也可改为研究f(-x)+f(x)=0,f(-x)-f(x)=0是否成立.正解:方法一:∵===-∴是奇函数 方法二:∵= ∴是奇函数[例4]函数y=的单调增区间是_________.错解:因为函数的对称轴是,图像是抛物线,开口向下,由图可知在上是增函数,所以y=的增区间是错因:在求单调性的过程中注意到了复合函数的单调性研究方法,但没有考虑到函数的单调性只能在函数的定义域内来讨论,从而忽视了函数的定义域,导致了解题的错误.正解:y=的定义域是,又在区间上增函数,在
7、区间是减函数,所以y=的增区间是[例5]已知奇函数f(x)是定义在(-3,3)上的减函数,且满足不等式f(x-3)+f(x2-3)<0,求x的取值范围.错解:∵f(x)是奇函数,∴f(x-3)<-f(x2-3)= f(3-x2),又f(x)在(-3,3)上是减函数,∴x-3>3-x2,即x2+x-6>0解得x>2或x<-3又f(x)是定义在(-3,3)上的函数,所以2<x<3错因:只考虑到奇函数与单调性,而没有正确理解函数的定义域.正解:由,故0
此文档下载收益归作者所有