..对数函数性质的应用

..对数函数性质的应用

ID:29081257

大小:289.50 KB

页数:7页

时间:2018-12-16

..对数函数性质的应用_第1页
..对数函数性质的应用_第2页
..对数函数性质的应用_第3页
..对数函数性质的应用_第4页
..对数函数性质的应用_第5页
资源描述:

《..对数函数性质的应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2.2对数函数的性质的应用(2)【教学目标】    1、使学生理解对数函数的定义,进一步掌握对数函数的图像和性质。    2、:通过定义的复习,图像特征的观察、巩固过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。    3、通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。【教学重难点】 教学重点:对数函数的图像和性质  教学难点:底数 a 的变化对函数性质的影响【教学过程】(一)预习检查

2、、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性.(二)情景导入、展示目标1.对数函数的图象由于对数函数与指数函数互为反函数,所以的图象与的图象关于直线对称因此,我们只要画出和的图象关于对称的曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质2.对数函数的性质由对数函数的图象,观察得出对数函数的性质见P87表a>10

3、讲点拨例1求下列函数的定义域:(1);(2);(3)分析:此题主要利用对数函数的定义域(0,+∞)求解解:(1)由>0得,∴函数的定义域是;(2)由得,∴函数的定义域是(3)由9-得-3,∴函数的定义域是点评:要牢记对数函数的定义域(0,+∞)。例2比较大小1.,,2.例3求下列函数的反函数①②解:①∴②∴例4画出函数y=x及y=的图象,并且说明这两个函数的相同性质和不同性质.解:相同性质:两图象都位于y轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.不同性质:

4、y=x的图象是上升的曲线,y=的图象是下降的曲线,这说明前者在(0,+∞)上是增函数,后者在(0,+∞)上是减函数.(四)反思总结、当堂检测1.求下列函数的定义域:(1)y=(1-x)(2)y=(3)y=解:(1)由1-x>0得x<1∴所求函数定义域为{x

5、x<1(2)由x≠0,得x≠1,又x>0∴所求函数定义域为{x

6、x>0且x≠1}(3)由∴所求函数定义域为{x

7、x<(4)由∴x≥1∴所求函数定义域为{x

8、x≥1}2.函数恒过的定点坐标是()A.B.C.D.3.若求实数的取值范围【板书设计】一、

9、对数函数性质1.图像2.性质二、例题例1变式1例2变式2【作业布置】导学案课后练习与提高2.2.2对数函数的性质的应用(2)课前预习学案一、预习目标记住对数函数的定义;掌握对数函数的图象与性质.二、预习内容1.对数函数的性质:a>10

10、掌握对数函数的图像和性质2、通过定义的复习,图像特征的观察、巩固过程使学生懂得理论与实践的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。 教学重点:对数函数的图像和性质  教学难点:底数 a 的变化对函数性质的影响二、学习过程探究点一例1求下列函数的定义域:(1);(2);(3)解析:利用对数函数的定义域解.解:略点评:本题主要考察了利用函数的定义域.探究点二例2.比较大小1.,,2.解析:利用对数函数的单调性解.解:略点评:本题主要考察了利用函数的单调性比

11、较对数的大小.探究点三例3求下列函数的反函数①②解析:利用对数函数与指数函数互为反函数解.解:略点评:本题主要考察了反函数的解法.三、反思总结四、当堂检测1.求下列函数的定义域:(1)y=(1-x)(2)y=(3)y=2.若求实数的取值范围课后练习与提高1、函数的定义域是()A、B、C、D、2、函数的值域是()A、B、C、D、3、若,那么满足的条件是()A、B、C、D、4、已知函数,判断的奇偶性和单调性。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。