欢迎来到天天文库
浏览记录
ID:28977141
大小:85.00 KB
页数:3页
时间:2018-12-15
《12.3.2等边三角形2》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、年级八年级课题12.3.2等边三角形(2)课型新授教学媒体多媒体教学目标知识技能1.掌握含30°角的直角三角形的边角性质.2.了解直角三角形边角性质定理的逆定理.3.会用上面性质证明简单的线段倍分问题.过程方法通过探究30°角直角三角形的性质,增强学生对特殊直角三角形的认识,培养分析问题、解决问题的能力.情感态度通过学习30°角直角三角形的性质,了解等边三角形与30°角直角三角形相互转化的事实,培养学生用发展变化的思想看问题的价值观.教学重点含30°角的直角三角形的性质.教学难点含30°角的直角三角形性质的推导.
2、教学过程设计教学程序及教学内容师生行为设计意图一、情境引入我们见过那些特殊形状的三角形(即三角形每个内角度数不变)?二、探究新知探究:1.将两个含30°角的三角尺按如图所示摆放在一起,观察并回答下面的问题:(1)判断△ABD的形状,依据是什么?(2)BC与CD大小有什么关系关系?为什么?(3)BC与AB大小有什么关系?为什么?你能归纳含30°角的直角三角形性质吗?归纳:含30°角的直角三角形的边角性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。事实上,上述定理的逆命题也是真命题:在
3、直角三角形中,如果一条直角边等于斜边的一半,那么它对的角等于30°。含30°角的直角三角形是半个等边三角形,除了具有上述边角的特殊关系外,它的三个角度数分别为30°、60°、90°所以它是一个特殊的直角三角形.学生列举特殊形状的三角形,老师引出本节课的课题,并板书课题。学生观察、思考、猜测、证明、归纳结论。教师给出含30°角的直角三角形性质的准确描述,并板书性质。对以前所学的特殊形状的三角形进行归纳,增强学生对特殊直角三角形的认识。学生通过观察、思考、猜测、证明、归纳,培养学生的语言表达能力、观察能力、归纳能力、
4、养成良好的自觉探索几何命题的习惯。【例题】如图,在中,∠BAC=120°,AB=AC,AD⊥AC交BC于D,求证:BC=3AD.【解析】∵∠BAC=120°,AB=AC,可知∠B=∠C=30°,∵AD⊥AC,∴∠BAD=30°,∴BD=AD,在Rt中,∠C=30°,∴CD=2AD,∴BC=3AD.【点拨】顶角为120°的等腰三角形,顶角是底角的4倍,因含有30°角,易于出现线段倍分问题,除本题外,还有如“底边上的高等于腰长的一半”等特殊性。所以它是较为特殊的三角形,可将等腰三角形与直角三角形巧妙结合,被考查的概率
5、很大。三、课堂训练1.三角形三个内角的度数之比为1∶2∶3,它的最短边长4cm,则它的最长边为______cm.2.等腰三角形的顶角为120°,腰长为6,则底边上的高线长为_______.3.等腰三角形的顶角为150°,腰长为6,则其面积为_______.4.一个三角形的两个内角分别为30°、75°,最长边为8cm,则这个三角形的面积为______.5.在Rt中,∠C=90°,∠B=15°,AC=10,AB的垂直平分线交BC于D,则DB=_______.6.如图,在中,BD是AC边上的中线,DB⊥BC于B,且∠A
6、BC=120°,求证:AB=2BC.7.如图,中,∠ACB=90°,∠A=30°,CD是斜边上的高,CE是中线,若AB=8,求DE长.学生独立思考思考,再相互交流。教师引导学生计算图中角的度数,把角的关系转化为边的关系。第1、2题学生自己画图,自己解决问题。第3、4、5题教师引导学生画图,计算图中角的度数,把角的关系转化为边的关系。教师引导学生作辅助线:延长BD到E,使BD=DE(中线倍长法),创造全等三角形。学生画图,给予证明。学生先独立思考,再相互交流。教师引导学生计算图中角的度数,把角的关系转化为边的关系。
7、考察学生队30°角的直角三角形性质的掌握,学生体会特殊形状的三角形通过角的关系可以转化为边的关系,同样通过边的关系也可以转化为角的关系。考察学生对30°角的直角三角形性质的掌握,培养学生动手画图能力、分析问题、解决问题的能力。让学生知道“中线倍长法”是构造全等三角形常见的辅助线,他能把分散的条件集中在同一个三角形中去解决问题。考察学生对30°角的直角三角形性质的掌握,培养分析问题、解决问题的能力。,拓展思维:如图所示,一艘轮船以15海里/时的速度由南向北航行,在A处测得小岛P在北偏西15°方向上,两小时后,轮船在
8、B处测得小岛P在北偏西30°方向上,已知在小岛周围18海里内有暗礁,若轮船继续向前航行有无触礁的危险?四、小结归纳学生本节课的主要收获1.掌握含30°角的直角三角形的边角性质.2.会用上面性质证明简单的线段倍分问题.五、作业设计一、教材第56页练习题。二、教材第64页习题第7题。三、教材第58页习题第14题选做。四、补充作业:如图,∠AOB=30°,OC平分∠AOB,P为
此文档下载收益归作者所有