欢迎来到天天文库
浏览记录
ID:28587003
大小:360.04 KB
页数:7页
时间:2018-12-11
《充分必要条件 学生》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、志格教育一对一精品课堂志格教育学科教师辅导讲义课题充分条件和必要条件教学目标1.使学生理解充要条件的概念,掌握充要条件的判断;2.在师生、学生间的数学交流中增强逻辑思维活动,为用等价转化思想解决数学问题打下良好的逻辑基础.教学内容同学们,当某一天你和你的妈妈在街上遇到老师的时候,你向老师介绍你的妈妈说:“这是我的妈妈”.那么,大家想一想这个时候你的妈妈还会不会补充说:“你是她的孩子”呢?不会了!为什么呢?因为前面你所介绍的她是你的妈妈就足于保证你是她的孩子.那么,这在数学中是一层什么样的关系呢?今天我们就来学习这个有意义的课题—充分条件与必要条件.二、讲解新课
2、:⒈符号“”的含义前面我们讨论了“若p则q”形式的命题,其中有的命题为真,有的命题为假.“若p则q”为真,就是说,如果p成立,那么q一定成立,记作pq,或者qp;如果由p推不出q,命题为假,记作pq.简单地说,“若p则q”为真,记作pq(或qp);“若p则q”为假,记作pq(或qp).符号“”叫做推断符号.例如,“若x>0,则x2>0”是一个真命题,可写成:x>0x2>0;又如,“若两三角形全等,则两三角形的面积相等”是一个真命题,可写成:两三角形全等两三角形面积相等.说明:⑴“pq”表示“若p则q”为真;也表示“p蕴含q”.⑵“pq”也可写为“qp”,有时也
3、用“p→q”.⒉什么是充分条件?什么是必要条件?如果已知pq,那么我们就说,p是q的充分条件,q是p的必要条件.在上面是两个例子中,“x>0”是“x2>0”的充分条件,“x2>0”是“x>0”的必要条件;志格教育一对一精品课堂“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件.⒊充分条件与必要条件的判断1.直接利用定义判断:即“若pq成立,则p是q的充分条件,q是p的必要条件”.(条件与结论是相对的)4.什么是充要条件?如果既有pq,又有qp,就记作pq.此时,p既是q的充分条件,p又是q的必要条件,我们就说,p
4、是q的充分必要条件,简称充要条件.(当然此时也可以说q是p的充要条件)例如,“x=0,y=0”是“x2+y2=0”的充要条件;“三角形的三条边相等”是“三角形的三个角相等”的充要条件.说明:⑴符号“”叫做等价符号.“pq”表示“pq且pq”;也表示“p等价于q”.⑵“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”,“仅当”表示“必要”.5.几个相关的概念若pq,但pq,则说p是q的充分而不必要条件;若pq,但pq,则说p是q的必要而不充分条件;若pq,且pq,则说p是q的既不充分也不必要条件.例如,“x>2”是“x>1”的充分而不必要的条件
5、;“x>1”是“x>2”的必要而不充分的条件;“x>0,y>0”是“x+y<0”的既不充分也不必要的条件.6.充要条件的判断方法四种“条件”的情况反映了命题的条件与结论之间的因果关系,所以在判断时应该:⑴确定条件是什么,结论是什么;⑵尝试从条件推出结论,从结论推出条件(方法有:直接证法或间接证法);⑶确定条件是结论的什么条件.7.怎样用集合的观点对“充分”、“必要”、“充要”三种条件进行概括?答:有两种说法:⑴若AB,则A是B的充分条件,B是A的必要条件;若A=B,则A是B的充要条件(此时B也是A的充要条件).在含有变量的命题中,凡能使命题为真的变量x的允许值
6、集合,叫做此命题的真值集合.志格教育一对一精品课堂⑵若pq,说明p的真值集合q的真值集合,则p是q的充分条件,q是p的必要条件;若pq,说明p,q的真值集合相等,即p,q等价,则p是q充要条件(此时q也是p的充要条件).例1指出下列各组命题中,p是q的什么条件,q是p的什么条件:⑴p:x=y;q:x2=y2.⑵p:三角形的三条边相等;q:三角形的三个角相等.例2(补)如图1,有一个圆A,在其内又含有一个圆B.请回答:⑴命题:若“A为绿色”,则“B为绿色”中,“A为绿色”是“B为绿色”的什么条件;“B为绿色”又是“A为绿色”的什么条件.⑵命题:若“红点在B内”,
7、则“红点一定在A内”中,“红点在B内”是“红点在A内”的什么条件;“红点在A内”又是“红点在B内”的什么条件.★★★如何理解充分条件与必要条件中的“充分”和“必要”呢?下面我们以例2为例来说明.志格教育一对一精品课堂先说充分性:说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.例如,说“A为绿色”是“B为绿色”的一个充分条件,就是说“A为绿色”,它足以保证“B为绿色”.它符合上述的“若p则q”为真(即pq)的形式.再说必要性:必要就是必须,必不可少.从例2的图可以看出,如果“B为绿色”,A可能为绿色,A也可能不为绿色.但如果“B不为绿色”,
8、那么“A不可能为绿色”.因此,必要条件
此文档下载收益归作者所有