xx届高考数学知识梳理复习教案

xx届高考数学知识梳理复习教案

ID:27289471

大小:17.06 KB

页数:6页

时间:2018-12-02

xx届高考数学知识梳理复习教案_第1页
xx届高考数学知识梳理复习教案_第2页
xx届高考数学知识梳理复习教案_第3页
xx届高考数学知识梳理复习教案_第4页
xx届高考数学知识梳理复习教案_第5页
资源描述:

《xx届高考数学知识梳理复习教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。XX届高考数学知识梳理复习教案本资料为woRD文档,请点击下载地址下载全文下载地址  教案18  函数的单调性  一、课前检测  .下列函数中,满足“对,当时,都有”的是(  B  )  A.  B.  c.  D.  2.函数和的递增区间依次是(  c  )  A.  B.  c.  D.  3.已知函数在内单调递减,则的取值范围是(  c  )团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我

2、们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。  A.  B.  c.  D.  二、知识梳理  .函数的单调性:一般地,设函数的定义域为,区间,如果对于区间内的任意两个值,当时都有,那么就称函数在区间上是单调  函数,区间称为的  区间.  解读:  2.判断函数单调性的常用方法:  (1)定义法:  (2)图象法:  (3)导数法:(4)

3、利用复合函数的单调性:  解读:  3.关于函数单调性还有以下一些常见结论:  ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______;  ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性;团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相

4、互努力,我们获得了不少经验。  ③互为反函数的两个函数在各自定义域上有______的单调性;  解读:  4.求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等  解读:    三、典型例题分析  例1  求证:在上是增函数.  答案:略  变式训练:对于给定的函数,有以下四个结论:  ①的图象关于原点对称;②在定义域上是增函数;③在区间上为减函数,且在上为增函数;④有最小值2。  其中结论正确的是  .  答案:①③④  小结与拓展:对“对勾函数”的认识。  例2  已知函数.满足对任意的都有

5、  成立,则的取值范围是  (  A团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。  )  A.  B.  c.  D.    变式训练:已知函数,若则实数的取值范围是  .  解析:在上是增函数,由题得,解得    小结与拓展:判断函数单调性的基本方法是定义法。    例3(1)函数

6、的递增区间为___________;  答案:  (2)函数的递减区间为_________。  答案:  变式训练1:求函数的单调区间;  答案:递增区间为;递减区间为  变式训练2:已知在[0,1]上是减函数,则实数的取值范围是____。  解:题中隐含a>0,∴2-ax在[0,1]上是减函数.∴y=logau应为增函数,且u=2-ax在[0,1]上应恒大于零.∴团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及

7、各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。  ∴1<a<2.  小结与拓展:复合函数单调性按照“同增异减”的法则来判定  例4  函数f对任意的a、b∈R,都有f=f+f-1,并且当x>0时,f>1.  (1)求证:f是R上的增函数;  (2)若f=5,解不等式f<3.  解:(1)设x1,x2∈R,且x1<x2,  则x2-x1>0,∴f>1.  f-f=f+x1)-f=f+f-1-f=f-1>0.  ∴f(x2

8、)>f.  即f是R上的增函数.  (2)∵f(4)=f(2+2)=f(2)+f(2)-1=5,  ∴f(2)=3,  ∴原不等式可化为f<f,  ∵f是R上的增函数,∴3m2-m-2<2,  解得-1<m<,故解集为(-1,).  小结与拓展:判断抽象函数单调性的基本方法是定义法,关键是根据条件判断的符号,需要设法构造出的因式。    变式训练:已知定义在区间上的函数满足,且当时,,团结创新,尽现丰富多彩

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。