xx届高考数学教材知识点函数的单调性复习导学案

xx届高考数学教材知识点函数的单调性复习导学案

ID:27175240

大小:16.33 KB

页数:4页

时间:2018-12-01

xx届高考数学教材知识点函数的单调性复习导学案_第1页
xx届高考数学教材知识点函数的单调性复习导学案_第2页
xx届高考数学教材知识点函数的单调性复习导学案_第3页
xx届高考数学教材知识点函数的单调性复习导学案_第4页
资源描述:

《xx届高考数学教材知识点函数的单调性复习导学案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。XX届高考数学教材知识点函数的单调性复习导学案本资料为woRD文档,请点击下载地址下载全文下载地址课  件www.5y  kj.com  【学习目标】  .理解函数的单调性及其几何意义.  2.会运用函数图像理解和研究函数的性质.  3.会求简单函数的值域,理解最大值及几何意义.    预  习  案  .单调性定义  单调性定义:给定区间D上的函数y=f,若对于  ∈D,当x1<x2时,都有f  f,则f为区间D上的增函数,否则为区间D上的减函数. 

2、 单调性与单调区间密不可分,单调区间是定义域的子区间.  证明单调性的步骤:证明函数的单调性一般从定义入手,也可以从导数入手.团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。  ①利用定义证明单调性的一般步骤是a.∀x1,x2∈D,  ,b.计算  并判断符号,c.结论.  ②设y=f在某区间内可导,若f′  0,则f为增

3、函数,若f′  0,则f为减函数.  2.与单调性有关的结论  若f,g均为某区间上的增函数,则f+g为某区间上的  函数.  若f为增函数,则-f为  函数.  y=f是定义在m上的函数,若f与g的单调性相同,则y=f是  .若f与g的单调性相反,则y=f是  .  奇函数在对称区间上的单调性  ,偶函数在对称区间上的单调性  .  若函数f在闭区间上是减函数,则f的最大值为  ,最小值为  ,值域为  .团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班

4、班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。  3.函数的最值  设函数y=f的定义域为I,如果存在实数m满足:①对于任意x∈I,都有  ,②存在x0∈I,使得  ,那么称m是函数y=f的最大值;类比定义y=f的最小值.  【预习自测】  .f=x2-2x的单调增区间为  ;fmax=________.  2.函数y=1-x1+x的减区间是____________;函数y=1-x1+x的减区间是___________.  3.函数f=log0.5的增区间  ;减区间  .  

5、4.函数y=x2+bx+c=x2+2x+ax,x∈上的最值.    题型四  函数单调性的应用  例4. 是否存在实数a,使函数f=loga在区间上是增函数?如果存在,求a的范围.团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。  探究4. 已知f=2-ax+1,x<1,ax,x≥1是R上的增函数

6、,那么a的取值范围是________.    已知函数f在区间[0,+∞)上单调递增,且满足f<f的x的取值范围为________.  我的学习总结:  (1)我对知识的总结      .  (2)我对数学思想及方法的总结  课  件www.5y  kj.com团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。