资源描述:
《《行列式与矩阵》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第九章行列式与矩阵本章主要内容§9.1二阶、三阶行列式§9.2三阶行列式的性质§9.3高阶行列式克莱姆(Gramer)法则§9.4矩阵的概念及其运算§9.5逆矩阵§9.6分块矩阵§9.7矩阵的初等变换学习目标1、掌握二阶、三阶行列式的计算2、理解n阶行列式的定义和性质3、理解和掌握行列式按行(列)展开的计算方法4、掌握应用克莱姆法则的条件及结论5、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等6、了解几种特殊的矩阵及其性质7、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质8、理
2、解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当可逆时,会用伴随矩阵求逆矩阵9.1二阶、三阶行列式1.二阶行列式2.三阶行列式1.二阶行列式a11x1a12x2b1,(Ⅰ)axaxb.2112222aaaa0时,方程组(I)有唯一解11221221a22b1a12b2a11b2a21b1x,x2.1aaaaa11a22a12a2111221221aa1112二阶行列式a11a22a12a21aa2122ai1,2;j1,2:行列式的元素.ij主
3、对角线aa1112aaaa11221221aa次对角线2122线性方程(I)的解可以表示为:二阶行列式的展开式baab112111baab222x,x212.1aa2aa11121112aaaa21222122如果记:Da11a12,b1a12a11b1D1,D,aaba22122222a21b2则线性方程(I)的解可以简单的表示为:DDx1,x2,(D0)12DD行列式D是方程组(I)的系数行列式.例1用行列式解二元一次方程组:2x1x25,3x2x11.12解21
4、D22(1)370,325125D121,D27.112311D21D7x13,x21.12D7D72.三阶行列式a11x1a12x2a13x3b1,(Ⅱ)a21x1a22x2a23x3b2,axaxaxb3113223333baabaabaabaabaabaa122332321331223123322123332213x,1aaaaaaaaaaaaaaaaaa1122331223311321321123321
5、22133132231b1a31a23b2a11a33b3a21a13b1a21a33b2a13a31b3a23a11x2,aaaaaaaaaaaaaaaaaa112233122331132132112332122133132231b1a21a32b2a12a31b3a11a22b1a22a31b2a32a11b3a12a11x.2aaaaaaaaaaaaaaaaaa112233122331132132112332122133132231aaa111
6、213Daaaa11a22a33a12a23a31212223a13a21a32aaa313233a13a22a31a12a21a33a11a23a32三阶行列式三阶行列式的展开式aaa111213aaa212223aaa313233b1a12a13abaa11a12b111113Dbaa,Daab122223Daba,321222.221223b3a32a33a31b3a33a31a32b3于是方程组的解可以简单表示为:DDD123x1,x2,x3,(D0).DDD例2计算下
7、列行列式:132axy(1)302(2)0bz.21300c132023230解111213302(1)(1)3(1)2(1)132321213(1)2352311axy(2)0bzabc00000abc.00c三角行列式例3用行列式解三元线性方程组:x2xx3,1232xxx3,123x4x2x5.123121解D211282184110,142321131123D13
8、1133,D223111,D321322.542152145xD1333,D2111,D3221x2x32.D11D11D119.2三阶行列式的性质把行列式aaa111213Daaa212223aaa313233的行和列依次互换,得到行列式aaa112131Daaa122232D的转置行列式aaa132333性质1行列式和它的转置行列式相等,即DD.123102例