欢迎来到天天文库
浏览记录
ID:25827966
大小:50.00 KB
页数:5页
时间:2018-11-23
《高考文科数学复习的方法和技巧论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、高考文科数学复习的方法和技巧论文针对文科生的特点和教材对文科的要求,采取相应的复习方法和策略,是行之有效的。1.强化“三基”,夯实基础所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年针对文科生的特点和教材对文科的要求,采取相应的复习方法和策略,是行之有效的。1.强化“三基”,夯实基础所谓“三基”就是指基础知识、基本技能和基本的数学思想方法,从近几年的高考数学试题可见“出活题、考基础、考能力”仍是命题的主导思想。因而在复习时应注意加强“三基”题型的训练,不要急于求成,好高骛远,抓了高
2、深的,丢了基本的。考生要深化对“三基”的理解、掌握和运用,高考试题改革的重点是:从“知识立意”向“能力立意”转变,考试大纲提出的数学学科能力要求是:能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识。新课标提出的数学学科的能力为:数学地提出问题、分析问题和解决问题的能力,数学探究能力,数学建模能力,数学交流能力,数学实践能力,数学思维能力。考生复习基础知识要抓住本学科内各部分内容之间的联系与综合进行重新组合,对所学知识的认识形成一个较为完整的结构,达到“牵一发而动全身”的境界。强化基本技
3、能的训练要克服“眼高手低”现象,主要在速算、语言表达、解题规范、反思矫正等方面下功夫,尽量不丢或少丢一些不应该丢失的分数。2.全面复习,系统整理知识,查漏补缺,优化知识结构这是第一阶段复习中应该重点解决的问题。考生在这一过程应牢牢抓住以下几点:①概念的准确理解和实质性理解;②基本技能、基本方法的熟练和初步应用;③公式、定理的正逆推导运用,抓好相互的联系、变形和巧用。经过全面复习这一阶段的努力,应使达到以下要求:按大纲要求理解或掌握概念;能理解或独立完成课本中的定理证明;能熟练解答课本上的例题、习题;
4、能简要说出各单元题目类型及主要解法;形成系统知识的合理结构和解题步骤的规范化。这一阶段的直接效益是会考得优,其根本目的是为数学素质的提高准备物质基础。认真做好全面复习,才谈得上灵活性和综合性,才能适应高考踩分点多、覆盖面广的特点。这一阶段复习的基本方法是从大到小、先粗后细,把教学中分割讲授的知识单点、知识片断组织合成知识链、知识体系、知识结构,使之各科内容综合化;基础知识体系化;基本方法类型化;解题步骤规范化。这当中,辅以图线、表格、口诀等已被证明是有益的,“习题化”的复习技术亦被证明是成功的,如,
5、基本内容填空,基本概念判断,基本公式串联,基本运算选择。3.加强对知识交汇点问题的训练课本上每章的习题往往是为巩固本章内容而设置的,所用知识相对比较单一。复习中考生对知识交汇点的问题应适当加强训练,实际上就是训练学生的分析问题解决问题的能力。要形成有效的知识网络。知识网络就是知识之间的基本联系,它反映知识发生的过程,知识所要回答的基本问题。构建知识网络的过程是一个把厚书(课本)读薄的过程;同时通过综合复习,还应该把薄书读厚,这个厚,应该比课本更充实,在课本的基础上加入一些更宏观的认识,更个性化的理解
6、,更具操作性的解题经验。综合性的问题往往是可以分解为几个简单的问题来解决的,这几个简单问题有机的结合在一起。要解决这类考题,关键在于弄清题意,将之分解,找到突破口。4.不搞题海取胜,注重题目的质量和处理水平如果采取题海战术、猜题押题等手段来应付升学考试,其结果是步入了“低效率、重负担、低质量”的恶性循环的怪圈。应该控制总题量,不依靠题海取胜,当处理的题目达到一定的数量后,决定复习效果的关键性因素就不再是题目的数量,而在于题目的质量和处理水平。①考生对立意新颖、结构精巧的新题予以足够的重视,要保证有相
7、当数量的这类题目,但也不一味排斥一些典型的所谓“新题”、“热题”。传统的好题,包括课本上的一些例、习题应成为保留节目。陈题新解、熟题重温可使学生获得新的感受和乐趣。②要控制题目的难度,在“稳”、“实”上狠下功夫,那些只有运用“特技”才能解决的“偏、怪、奇”的题,坚决摒弃。③要讲究讲评试卷的方法和技巧。题目训练更强调收效。考生学好数学就必须做题,各种类型题目的训练是必须的,但决不能搞题海战术。做题的目的是训练分析问题解决问题的数学能力,是检验对数学基本概念、公式的掌握和运用能力。因此,做题一定要强调有
8、收效,不要做了也不理解,甚至不知道做对没有。强化通性通法的训练,让自己达到一做就能得分的境地。要善于在解题后进行归纳总结,不要盲目地毫无针对性地要求学生做题,更没有必要大量反复地做同一类型的题,要认识到理解了10道题的收效要大于匆忙做100道重复的题。重要的是能够举一反三,融会贯通。5.注意归纳总结常用的数学思想方法数学思想方法较之数学基础知识,有更高的层次,具有观念性的地位,考生应注意归纳总结。主要思想方法有:函数与方程,化归与转化,分类与整合,数形结合与分离,有限
此文档下载收益归作者所有