浅谈高中数学课堂的有效建构论文

浅谈高中数学课堂的有效建构论文

ID:25012429

大小:52.50 KB

页数:6页

时间:2018-11-17

浅谈高中数学课堂的有效建构论文_第1页
浅谈高中数学课堂的有效建构论文_第2页
浅谈高中数学课堂的有效建构论文_第3页
浅谈高中数学课堂的有效建构论文_第4页
浅谈高中数学课堂的有效建构论文_第5页
资源描述:

《浅谈高中数学课堂的有效建构论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、浅谈高中数学课堂的有效建构论文论文关键词建构主义高中数学课堂主体论文摘要本文通过分析建构主义与高中数学课程的契合点,以图寻找到合理建构高中数学课堂的有效途径,提高高中数学教学质量。建构主义学习理论强论文关键词建构主义高中数学课堂主体论文摘要本文通过分析建构主义与高中数学课程的契合点,以图寻找到合理建构高中数学课堂的有效途径,提高高中数学教学质量。建构主义学习理论强调学习者个体的主体性,将知识看作主体对客观事实主观性加工的结果,重视学生对知识的主观分析、检查验证和二次加工创造,从这个角度讲,这与高中数学教学存在某种辐合。充分挖掘两者之间存在的联系,对于将此学习理论恰当运用到高中数学教学过

2、程中,促进学生灵活有效地掌握高中数学知识有重要的意义。一、建构主义与高中数学教学的契合数学,作为一门古老的基础学科,在漫长的发展过程中,形成了严谨的科学知识体系,这种知识上的衔接性、逻辑性都存在很好的建构性,尤其是高中数学,在小学、初中基本数概念、顺序、换元等基本数学知识模式储备的前提下,愈显知识体系上的建构特点。纵观高中数学内容,从集合到映射,从映射到一次函数,再到二次函数、反函数;从整数到分数,从有理数到无理数,再到复数;从排列到组合,进而凝练出二项式;从平面几何到立体几何,又到平面解析几何,这些知识模块内的层次递进,无不有着严格的逻辑性,在知识的学习上环环相扣,前提性知识的学习有

3、着某种不可替代性,这种严谨性从另一方面恰恰利于学生对知识的建构性、规律性学习,高中数学课程的这种本质性建构特点,为建构主义学习在高中数学教学中的合理利用提供了基础。从学生自身来讲,高中生的抽象逻辑性思维高度发展,知识掌握的概括性和间接性进一步增强,与初中生相比,高中生更能够从多角度、多维度思考问题,并且能运用综合、分析、判断、推理等更加复杂的方法进行规律的探寻,这种逐渐摆脱具体形象的思维模式,有利于高中生短时间内对高度抽象的数学知识进行有效掌握,同时,高中生的创造能力也迅速发展,不再单一被动地一味接受既有知识,更倾向于结合自身知识体系对知识进行理解和消化,可以说,高中生数学知识的准备性

4、和心理发展的定型化,为高中数学的建构学习,提供了客观和主观条件。二、由整体到部分,自上而下设计教学步骤传统数学教学常采用部分到整体、自下而上的教学设计,往往将数学知识进行由低级到高级、由特殊到一般的呈现式教学,如通过大量的举例来完成学生对集合这一概念的掌握,这种方式有它的优势,符合个体掌握知识的基本过程,但是对于高中数学来讲,却难以调动学生已有知识水平和学习的参与主动性,建构主义视野下的教学,则提倡由整体到部分的授课方式,教师会提供知识的“骨架”如内涵及核心性质,让学生借助这一“骨架”去自行探索规律和收集实例,教师对教学过程进行管理与调控,这种建构还表现在教师对整体性学习任务进行要求,

5、而由学生自行进行任务分解并按照自己的方式节奏加以实现,还是以集合为例,教师在提供集合概念后,可以通过原型聚焦方式,引导学生进行集合性质的探索与归纳,最终得出集合确定性、互异性和无序性的认识,这种过程性探索的方式,对于接下来的复杂集合问题解决帮助很大。有了整体到部分的知识结构,在面对实际数学题目时便能够抓住主线,进行提纲挈领、顺藤摸瓜式问题解决了还是以高三立体几何内容为例,由于内容繁多,学生往往无从下手,做题时感觉非常茫然,如果能抓住立体几何的两大主线:证明与计算,将会起到事半功倍的效果,首先,以平行和垂直为主线进行证明问题解决,过程为:线线平行、线面平行、面面平行,线线垂直、线面垂直、

6、面面垂直,其次,以角和距离为主线进行计算,角的主线为:线线角——线面角——二面角,距离的主线为:点点距——点线距——点面距——线线距——线面距——面面距,重点是点面距。以上证明两主线都有几何法与向量法(转换为直线的方向向量或平面的法向量的平行与垂直问题),计算的两主线同样有几何法角均转化为平面角的问题,距离转化为点线(面)距,且均可按一找、二证、三解、四答的步骤进行和向量法(均转化为直线的方向向量与面的法向量的夹角问题,距离可直接用公式),抓住以上四主线,复习立体几何就会有的放矢,得心应手,由此我联想到整个数学教学只有使学生站在系统的高度,整体把握知识的主线,才能把盘根错节、零散的知识

7、整合起来。三、创设认知矛盾,实行多层次随机通达教学我们说,建构学习的前提是学习者已经具备一定知识基础,对旧知识的体系框架有较清晰的认识,因此,有效进行高中数学课堂教学,需要找准新旧知识的结合点,帮助学生在旧知识上找到认知矛盾,激发学生的兴趣例如,立体几何这一知识模块对于高中生来讲,与以往所掌握的知识有很大区别,往往存在知识经验上的相悖,点线面之间的组合更加灵活抽象,这种变化一方面给教学带来了一定难度,另一方面则恰恰是激发学生认知矛盾,促进探究学

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。