欢迎来到天天文库
浏览记录
ID:24957257
大小:3.24 MB
页数:23页
时间:2018-11-17
《立体几何的解题技巧》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、23高中数学新梦想教育中心授课老师;沈源立体几何大题的解题技巧——综合提升【命题分析】高考中立体几何命题特点:1.线面位置关系突出平行和垂直,将侧重于垂直关系.2.空间“角”与“距离”的计算常在解答题中综合出现.3.多面体及简单多面体的概念、性质多在选择题,填空题出现.4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.【考点分析】掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影
2、、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.【高考考查的重难点*状元总结】空间距离和角:“六个距离”:1两点间距离2点P到线l的距离(Q是直线l上任意一点,u为过点P的直线l法向量)3两异面直线的距离(P、Q分别是两直线上任意两点u为两直线公共法向量)4点P到平面的距离(Q是平面上任意一点,u为平面法向量)5直线与平面的距离【同上】6平行平面间的距离【同上】“三个角度”:1异面直线角【0,】cos=【辨】直线倾斜角范围【0,)2线面角【0,】sin=或者解三角形3二面角【0,】cos或者找垂直
3、线,解三角形2323高中数学新梦想教育中心授课老师;沈源不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。其中,利用空间向量求空间距离和角的套路与格式固定,是解决立体几何问题这套强有力的工具时,使得高考题具有很强的套路性。【例题解析】考点1点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用.典型例题例1(福建卷)如图,正三棱柱的所有棱长都为,为中
4、点.ABCD(Ⅰ)求证:平面;(Ⅱ)求二面角的大小;(Ⅲ)求点到平面的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.解:解法一:(Ⅰ)取中点,连结.ABCDOF为正三角形,.正三棱柱中,平面平面,平面.连结,在正方形中,分别为的中点,,.在正方形中,,平面.(Ⅱ)设与交于点,在平面中,作于,连结,由(Ⅰ)得平面.,为二面角的平面角.在中,由等面积法可求得,2323高中数学新梦想教育中心授课老师;沈源又,.所以二面角的大小为.(Ⅲ)中,,.在正三棱柱中,到平面的距离为.
5、设点到平面的距离为.由,得,.点到平面的距离为.解法二:(Ⅰ)取中点,连结.为正三角形,.在正三棱柱中,平面平面,平面.xzABCDOFy取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,,,.,,,.平面.(Ⅱ)设平面的法向量为.,.,,令得为平面的一个法向量.2323高中数学新梦想教育中心授课老师;沈源由(Ⅰ)知平面,为平面的法向量.,.二面角的大小为.(Ⅲ)由(Ⅱ),为平面法向量,.点到平面的距离.小结:本例中(Ⅲ)采用了两种方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B点到平面的距离转化为容易求的
6、点K到平面的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.考点2异面直线的距离考查异目主面直线的距离的概念及其求法考纲只要求掌握已给出公垂线段的异面直线的距离.例2已知三棱锥,底面是边长为的正三角形,棱的长为2,且垂直于底面.分别为的中点,求CD与SE间的距离.思路启迪:由于异面直线CD与SE的公垂线不易寻找,所以设法将所求异面直线的距离,转化成求直线与平面的距离,再进一步转化成求点到平面的距离.解:如图所示,取BD的中点F,连结EF,SF,CF,为的中位线
7、,∥∥面,到平面的距离即为两异面直线间的距离.又线面之间的距离可转化为线上一点C到平面的距离,设其为h,由题意知,,D、E、F分别是AB、BC、BD的中点,2323高中数学新梦想教育中心授课老师;沈源在Rt中,在Rt中,又由于,即,解得故CD与SE间的距离为.小结:通过本例我们可以看到求空间距离的过程,就是一个不断转化的过程.考点3直线到平面的距离偶尔会再加上平行平面间的距离,主要考查点面、线面、面面距离间的转化.例3.如图,在棱长为2的正方体中,G是的中点,求BD到平面的距离.BACDOGH思路启迪:把线面距离转化为点面距离,再用点到平面距离的方法
8、求解.解:解法一∥平面,上任意一点到平面的距离皆为所求,以下求点O平面的距离,,,平面,又平面平面,两个平面
此文档下载收益归作者所有