立体几何地解题技巧.doc

立体几何地解题技巧.doc

ID:57061837

大小:2.66 MB

页数:26页

时间:2020-07-31

立体几何地解题技巧.doc_第1页
立体几何地解题技巧.doc_第2页
立体几何地解题技巧.doc_第3页
立体几何地解题技巧.doc_第4页
立体几何地解题技巧.doc_第5页
资源描述:

《立体几何地解题技巧.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、立体几何新题型的解题技巧【命题趋向】在2007年高考中立体几何命题有如下特点:1.线面位置关系突出平行和垂直,将侧重于垂直关系.2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现.3.多面体及简单多面体的概念、性质多在选择题,填空题出现.4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点.此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题.【考点透视】(A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和

2、平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念..空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点容,高考试题中常将上述容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题.不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色.求解空间距离和角的方法有两种:一是利用传统

3、的几何方法,二是利用空间向量。【例题解析】考点1点到平面的距离求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面的垂足,当然别忘了转化法与等体积法的应用.典型例题例1(2007年卷理)如图,正三棱柱的所有棱长都为,为中点.ABCD(Ⅰ)求证:平面;(Ⅱ)求二面角的大小;(Ⅲ)求点到平面的距离.考查目的:本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.解答过程:解法一:(Ⅰ)取中点,连结.ABCDOF为正三角形,.正三棱柱中,平面平面,平面.连结,在正方形中,分别为的中点,,.在正方形中,,平面.

4、(Ⅱ)设与交于点,在平面中,作于,连结,由(Ⅰ)得平面.,为二面角的平面角.在中,由等面积法可求得,又,.所以二面角的大小为.(Ⅲ)中,,.在正三棱柱中,到平面的距离为.设点到平面的距离为.由,得,.点到平面的距离为.解法二:(Ⅰ)取中点,连结.为正三角形,.在正三棱柱中,平面平面,平面.xzABCDOFy取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,,,.,,,.平面.(Ⅱ)设平面的法向量为.,.,,令得为平面的一个法向量.由(Ⅰ)知平面,为平面的法向量.,.二面角的大小为.(Ⅲ)由(Ⅱ),为平面法向量,.点到平面的距离.小结:本例中(Ⅲ)采用了两种

5、方法求点到平面的距离.解法二采用了平面向量的计算方法,把不易直接求的B点到平面的距离转化为容易求的点K到平面的距离的计算方法,这是数学解题中常用的方法;解法一采用了等体积法,这种方法可以避免复杂的几何作图,显得更简单些,因此可优先考虑使用这一种方法.例2.(2006年卷)如图,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.(Ⅰ)证明PQ⊥平面ABCD;(Ⅱ)求异面直线AQ与PB所成的角;(Ⅲ)求点P到平面QAD的距离.命题目的:本题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.QBCP

6、ADOM过程指引:方法一关键是用恰当的方法找到所求的空间距离和角;方法二关键是掌握利用空间向量求空间距离和角的一般方法.解答过程:方法一 (Ⅰ)取AD的中点,连结PM,QM.因为P-ABCD与Q-ABCD都是正四棱锥,所以AD⊥PM,AD⊥QM.从而AD⊥平面PQM.又平面PQM,所以PQ⊥AD.同理PQ⊥AB,所以PQ⊥平面ABCD.(Ⅱ)连结AC、BD设,由PQ⊥平面ABCD及正四棱锥的性质可知O在PQ上,从而P、A、Q、C四点共面.取OC的中点N,连接PN.因为,所以,从而AQ∥PN,∠BPN(或其补角)是异面直线AQ与PB所成的角.因为,所以.从而异面直线AQ与PB所成

7、的角是.(Ⅲ)连结OM,则所以∠MQP=45°.由(Ⅰ)知AD⊥平面PMQ,所以平面PMQ⊥平面QAD.过P作PH⊥QM于H,PH⊥平面QAD.从而PH的长是点P到平面QAD的距离.又.QBCPADzyxO即点P到平面QAD的距离是.方法二 (Ⅰ)连结AC、BD,设.由P-ABCD与Q-ABCD都是正四棱锥,所以PO⊥平面ABCD,QO⊥平面ABCD.从而P、O、Q三点在一条直线上,所以PQ⊥平面ABCD.(Ⅱ)由题设知,ABCD是正方形,所以AC⊥BD.由(Ⅰ),QO⊥平面ABCD.故可分

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。