新课标中的几何概型解题探究

新课标中的几何概型解题探究

ID:24123294

大小:56.50 KB

页数:3页

时间:2018-11-12

新课标中的几何概型解题探究_第1页
新课标中的几何概型解题探究_第2页
新课标中的几何概型解题探究_第3页
资源描述:

《新课标中的几何概型解题探究》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、新课标中的几何概型解题探究溧阳戴埤高级中学彭静在新课程改革的思想下,苏教版普通高中课程标准实验教科书《数学》在必修3第三章概率的知识模块中加入了旧教材相对较少出现的几何概型,这不但更能体现新教材对知识模块的完整性的考虑,也在比较中提高了学牛.对古典概型的理解.在高考中,以选择题或填空题的形式考查与长度或面积有关的几何概型的求法是高考对木内容的热点考法,特别是与平面几何、函数等结合的几何概型是高考的重点,新课标高考对几何概型要求较低,因此高考试卷中此类题以中、低档为主。几何概型这部分内容的应用非常广泛,其中有很多非常经典的例子,如会面问题,布丰(G.L.

2、L.Buffon)投针问题等.几何概型主要是要把概率问题与几何问题完美的结合,用构造、数形结合的思想解决概率的问题.一、几何概型的基木特点几何概型与古典概型的区别之处就是试验的可能结果不是有限个,它具有以下两个基木特点:(1)无限性,即在一次试验中基木事件的个数是无限的;(2)等可能性,即每一个基木事件发生的可能性是均等的.所以,在几何概型中,随机事件的概率大小与随机事件所在IX域的形状、位置无关,只与该区域的大小有关.二、例解几何概型问题华罗庚:“数离开形少直观,形离开数难入微利用数形结合的思想,可沟通代数与几何的关系,实现难题巧解.对于一些题目,如

3、果能够借助几何图形的特点来达到解题的目的,我们就可以构造所需的图形来解题.计算有关几何概型问题的另一关键是选择正确的“几何度量”.下面根据不同的“几何度量”将几何概型问题进行分类阐述.(一)利用“角度”进行几何度量(二)利用“长度”进行几何度量有些几何概型可用“长度”作为测度,比如,把吋刻抽象为点,则吋间就可以抽象为长度.对于测度为“长度”的几何概型问题,可以画出线段图示,使问题直观易解.(三)利用“面积”进行几何度量要解决“面积型”几何概率问题,难点在于如何将文字语言转化为与之对应的图形语言,确定事件发生所构成的平面区域,在这点上需要认真地体会.例4

4、直接给出了几何图形,可以由此出发,利用面积比解决概率问题.但冇的问题并没有直接给出几何图形,而且问题中涉及到两个变量,此时我们就要利用平面直角坐标系作出图形,然后利用“面积”来解决.“面积型”几何概率问题在数学中还有很多很多,如:1.甲乙两艘轮船要停靠在同一个泊位,它们可能在一昼夜的任意吋刻到达,iL甲、乙两艘轮船停靠泊位的吋间分别是小时和小吋,求有一艘轮船停靠泊位时必须等待一段时间的概率.(四)利用“体积”进行几何度量对于几何概型公式,代入求解比较容易,但必须先要准确选择出几何度量.对属于三维空间的几何概型问题,一般会利用“体积”进行计算.三、几何概

5、型解题思路的分析解决几何概型问题的关键在于弄清题中的考察对象和对象的活动范围,利用己知条件建立适当的几何模型,从建立的几何模型入手,来解决概率问题.根据以上的解法和分析,我们把此类疑难问题的解决总结为以下四步:(1)构设变量.从问题情景中,发现哪些量是随机的,从而构设为该问题中的变量.(2)集合表示.把每次的试验结果用构设的变量表示出来,则可用相应的集合分别表示出全部的试验结果和事件所包含的试验结果.一般来说,两个集合都是几个二元一次不等式的交集.(3)作出区域.把以上集合所表示的区域作出:先作不等式对应的直线,然后取一特殊点,验证哪侧是符合条件的区域

6、.(4)计算求解.根据几何概型的公式,选取合适的几何度量,易从图形中把样本空间和要求概率的事件的几何图形的测度求出来,即分别求出线段、平面图形和立体图形的长度、面积和体积等,从而解题.在以上四步曲中,第二步和第三步是解答的关键,通过这两步,可以发现随机事件所对应的几何图形.其中第三步的作图需理解其原理.通过上述的例题解析说明,构造、数形结合的思想在几何概型解题方面右着你意想不到的功效,可以使问题很快便可解决.熟练掌握几何概型问题的解答,就会促使学生熟悉几何、代数、三角等基本知识技能并想方设法加以综合利用,这对学生的多元思维培养、学习兴趣的提高以及钻研独

7、创精神的发挥十分有利.因此,在解题教学时,若能启发学生从多角度、多渠道进行广泛的联想,则能得到许多构思巧妙、新颖独特、简捷有效的解题方法,而且还能加强学生对知识的理解,培养思维的灵活性,提高学生分析问题的创新能力.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。