古典概型与几何概型

古典概型与几何概型

ID:27421358

大小:409.01 KB

页数:22页

时间:2018-12-01

古典概型与几何概型_第1页
古典概型与几何概型_第2页
古典概型与几何概型_第3页
古典概型与几何概型_第4页
古典概型与几何概型_第5页
资源描述:

《古典概型与几何概型》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、考纲要求考纲研读1.古典概型(1)理解古典概型及其概率计算公式.(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.2.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.1.古典概型的概率等于所求事件中所含的基本事件数与总的基本事件数的比值.2.几何概型的关键之处在于将概率问题转化为长度,面积或体积之比.第2讲古典概型与几何概型1.古典概型的定义(1)试验的所有可能结果(基本事件)只有_______.有限个(2)每一个试验结果(基本事件)出现的可能性______.我们把具有以上这两个特征的随机试验

2、的数学模型称为古典概型.2.古典概型的计算公式对于古典概型,若试验的所有基本事件数为n,随机事件A包含的基本事件数为m,那么事件A的概率为P(A)=___.相等mnP(A)=3.几何概型的定义长度体积如果每个事件发生的概率只与构成该事件区域的______(____或_____)成比例,则这样的概率模型称为几何概率模型,简称几何概型.4.几何概型的特点无限不可数(1)试验的结果是_______________的.(2)每个结果出现的可能性_____.5.几何概型的概率公式构成事件A的区域长度(面积或体积)区域的全部结果所构成的区域长度(面积或体积).面

3、积相等DCC图15-2-1考点1古典概型例1:先后随机投掷2枚正方体骰子,其中x表示第1枚  骰子出现的点数,y表示第2枚骰子出现的点数.(1)求点P(x,y)在直线y=x-1上的概率;(2)求点P(x,y)满足y2<4x的概率.计算古典概型事件的概率可分为三步:①算出基本事件的总个数n;②求出事件A所包含的基本事件个数m;③代入公式求出概率P.【互动探究】1.(2011年广东揭阳二模)已知集合A={-2,0,2},B={-1,1},设M={(x,y)

4、x∈A,y∈B},在集合M内随机取出一个元素(x,y).(1)求以(x,y)为坐标的点落在圆x2+

5、y2=1上的概率;解:(1)集合M的所有元素有(-2,-1),(-2,1),(0,-1),(0,1),(2,-1),(2,1)共6个.记“以(x,y)为坐标的点落在圆x2+y2=1上”为事件A,则基本事件总数为6.因落在圆x2+y2=1上的点有(0,-1),(0,1)2个,即A包含的基本事件数为2.(2)记“以(x,y)为坐标的点位于区域D内”为事件B.则基本事件总数为6.图D39由图D39知位于区域D内(含边界)的点有:(-2,-1),(2,-1),(0,-1),(0,1)共4个,即B包含的基本事件数为4.考点2几何概型例2:(2011年广东珠海模

6、拟节选)甲、乙两人约定上午9点至12点在某地点见面,并约定任何一个人先到之后等另一个人不超过一个小时,一小时之内如对方不来,则离去.如果他们二人在8点到12点之间的任何时刻到达约定地点的概率都是相等的,求他们见到面的概率.图D38几何概型的关键在于构造出随机事件A所对应的几何图形,利用几何图形的度量来求随机事件的概率,根据实际情况,合理设置参数,建立适当的坐标系,在此基础上,将试验的每一个结果一一对应于坐标系的点,便可构造出度量区域.【互动探究】A考点3两种概型的综合运用例3:(2010年惠州调研)已知关于x的二次函数f(x)=ax2-2bx+8.(

7、1)设集合P={1,2,3}和Q={2,3,4,5},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间(-∞,2]上有零点且是减函数的概率;(2)若a是从区间[1,3]任取的一个数,b是从区间[2,5]任取的一个数,求函数y=f(x)在区间(-∞,2]上有零点且是减函数的概率.解题思路:这个题的两问分别考查的是古典概型和几何概型问题,又联合了一元二次方程根的分布问题.解析:(1)分别从集合P和Q中随机取一个数作为a和b,基本事件有如下12个:(1,2),(1,3),(1,4),(1,5),(2,2),(2,3),(2,4),(2,5

8、),(3,2),(3,3),(3,4),(3,5).(2)基本事件所构成的区域为M={(a,b)

9、1≤a≤3,2≤b≤5}.由(1)知构成事件“函数y=f(x)在区间(-∞,2]上有零点且是减函数”的区域为N={(a,b)

10、1≤a≤3,2≤b≤5,且b≥2a,a-b≤-2}.这题属于古典概型与几何概型的一个典型的题目,融合了函数的零点知识(一元二次方程根的分布问题).【互动探究】3.(2011年广东广州执信中学三模)已知两实数x,y满足0≤x≤2,1≤y≤3.(1)若x,y∈N,求使不等式2x-y+2>0成立的概率;(2)若x,y∈R,求使不等式2x

11、-y+2>0不成立的概率.(2)设“使不等式2x-y+2>0不成立”也即“使不等式2x-y+2≤0成立”为事

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。