欢迎来到天天文库
浏览记录
ID:21344483
大小:1.36 MB
页数:41页
时间:2018-10-18
《连续型随机变量及其分布函数》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一、概率密度的定义与性质二、常见连续型随机变量的分布三、内容小结第2.3节 连续型随机变量及其分布函数性质证明一、概率密度的定义与性质1.定义1证明xxp0)(同时得以下计算公式注意对于任意可能值a,连续型随机变量取a的概率等于零.即证明由此可得连续型随机变量的概率与区间的开闭无关设X为连续型随机变量,X=a是不可能事件,则有若X为离散型随机变量,注意连续型离散型例1故有解(1)因为X是连续型随机变量,解例2二、常见连续型随机变量的分布1.均匀分布概率密度函数图形分布函数例3设随机变量X在[2,5]上服从均匀分布,现对X进行三次独立观
2、测,试求至少有两次观测值大于3的概率.X的概率密度函数为设A表示“X的观测值大于3”,解即A={X>3}.因而有设Y表示“3次独立观测中观测值大于3的次数”,则2.指数分布某些元件或设备的寿命服从指数分布.例如无线电元件的寿命,电力设备的寿命,动物的寿命等都服从指数分布.应用与背景分布函数例4设某类日光灯管的使用寿命X服从参数为=1/2000的指数分布(单位:小时)(1)任取一只这种灯管,求能正常使用1000小时以上的概率.(2)有一只这种灯管已经正常使用了1000小时以上,求还能使用1000小时以上的概率.X的分布函数为解指数分布的
3、重要性质:“无记忆性”.3.正态分布(或高斯分布)正态分布概率密度函数的几何特征正态分布的分布函数正态分布是最常见最重要的一种分布,例如测量误差;人的生理特征尺寸如身高、体重等;正常情况下生产的产品尺寸:直径、长度、重量高度等都近似服从正态分布.正态分布的应用与背景正态分布下的概率计算原函数不是初等函数方法一:利用MATLAB软件包计算方法二:转化为标准正态分布查表计算标准正态分布的概率密度表示为标准正态分布标准正态分布的分布函数表示为标准正态分布的图形标准正态分布函数的性质:解例5证明则当时,其分布函数可以用标准正态分布的分布函数表示
4、,分布函数三、小结2.常见连续型随机变量的分布均匀分布正态分布(或高斯分布)指数分布正态分布有极其广泛的实际背景,例如测量误差;人的生理特征尺寸如身高、体重等;正常情况下生产的产品尺寸:直径、长度、重量高度;炮弹的弹落点的分布等,都服从或近似服从正态分布.可以说,正态分布是自然界和社会现象中最为常见的一种分布,一个变量如果受到大量微小的、独立的随机因素的影响,那么这个变量一般是一个正态随机变量.3.正态分布是概率论中最重要的分布另一方面,有些分布(如二项分布、泊松分布)的极限分布是正态分布.所以,无论在实践中,还是在理论上,正态分布都是
5、概率论中最重要的一种分布.二项分布向正态分布的转换解例1备份题解则有实根的概率为例2
此文档下载收益归作者所有