欢迎来到天天文库
浏览记录
ID:21315352
大小:319.00 KB
页数:17页
时间:2018-10-21
《北师大版八年级上3.3轴对称与坐标变化同步练习含答案解析》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2016年北师大新版八年级数学上册同步练习:3.3轴对称与坐标变化一、选择题(共8小题,每小题4分,满分32分)1.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为( )A.(3,2)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)2.如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)3.将平面直角坐标系内的△ABC的三个顶点坐标的横坐标乘以﹣1,纵坐标不
2、变,则所得的三角形与原三角形( )A.关于x轴对称B.关于y轴对称C.关于原点对称D.无任何对称关系4.若某四边形顶点的横坐标变为原来的相反数,而纵坐标不变,此时图形位置也不变,则这四边形不是( )A.矩形B.直角梯形C.正方形D.菱形5.已知点M与点P关于x轴对称,点N与点M关于y轴对称,若点N(1,2),则点P的坐标为( )A.(2,1)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)6.坐标平面上有一个轴对称图形,、两点在此图形上且互为对称点.若此图形上有一点C(﹣2,﹣9),则C的对
3、称点坐标为何( )A.(﹣2,1)B.C.D.(8,﹣9)7.点P(a﹣1,b﹣2)关于x轴对称与关于y轴对称的点坐标相同,则P点坐标为( )A.(﹣1,﹣2)B.(﹣1,0)C.(0,﹣2)D.(0,0)第17页(共17页)8.在平面直角坐标系中,正方形ABCD的顶点分别为A(1,1)、B(1,﹣1)、C(﹣1,﹣1)、D(﹣1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作P1关于点B的对称点P2,作点P2关于点C的对称点P3,作P3关于点D的对称点P4,作点P4关于点A的对
4、称点P5,作P5关于点B的对称点P6┅,按如此操作下去,则点P2011的坐标为( )A.(0,2)B.(2,0)C.(0,﹣2)D.(﹣2,0) 二、填空题(共4小题,每小题4分,满分16分)9.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n= .10.如图,在方格纸上建立的平面直角坐标系中,Rt△ABC关于y轴对称的图形为Rt△DEF,则点A的对应点D的坐标是 .11.如图,等边△ABC,B点在坐标原点,C点的坐标为(4,0),点A关于x轴对称点A′的坐标为
5、 .12.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为 .第17页(共17页) 三、解答题(共4小题,满分52分)13.△ABC在平面直角坐标系中的位置如图.请画出△ABC关于y轴对称的△A1B1C1,并求出A1、B1、C1三点的坐标.14.在直角坐标系中,将坐标是(3,0),(3,2),(0,3),(3,5),(3,2),(6,3),(6,2),(3,0),(6,0)的点用线段依次连接起来形成一个图案.(1)作出原
6、图案关于x轴对称的图案.两图案中的对应点的坐标有怎样的关系?(2)作出原图案关于y轴对称的图案.两图案中的对应点的坐标有怎样的关系?第17页(共17页)15.在图(1)中编号①②③④的四个三角形中,关于y轴对称的两个三角形的编号为 ;关于x轴对称的两个三角形的编号为 .在图(2)中,画出△ABC关于x轴对称的图形△A1B1C1,并分别写出点A1,B1,C1的坐标.16.在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(﹣2,0),
7、B(﹣1,0),C(﹣1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;(2)如果点P的坐标是(﹣a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长. 第17页(共17页)2016年北师大新版八年级数学上册同步练习:3.3轴对称与坐标变化参考答案与试题解析 一、选择题(共8小题,每小题4分,满分32分)1.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称
8、点的坐标为( )A.(3,2)B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(2,3),∴点A关于x轴的对称点的坐标为:(2,﹣3).故选:B.【点评】此题主要考查了关于x轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键. 2.如图,△ABC与△DEF关于y轴对
此文档下载收益归作者所有