构造法求数列通项公式

构造法求数列通项公式

ID:21034307

大小:251.50 KB

页数:4页

时间:2018-10-19

构造法求数列通项公式_第1页
构造法求数列通项公式_第2页
构造法求数列通项公式_第3页
构造法求数列通项公式_第4页
资源描述:

《构造法求数列通项公式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、构造法求数列通项公式求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考。一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为=A(其中A为常数)形式,根据等差数列的定义知是等差数列,根据等差数列的通项公式,先求出的通项公式,再根据与,从而求出的通项公式。例1在数列中,=,=(),求数列通项公式.解析:由an+1=得,an+1an=3an+1-3an=0,两边同除以an+1an得,,设bn=,则bn+1-bn=,根据等差数列的定义知,数列

2、{bn}是首相b1=2,公差d=的等差数列,根据等差数列的通项公式得bn=2+(n-1)=n+∴数列通项公式为an=评析:本例通过变形,将递推公式变形成为形式,应用等差数列的通项公式,先求出的通项公式,从而求出的通项公式。例2在数列{an}中,Sn是其前n项和,且Sn≠0,a1=1,an=(n≥2),求Sn与an。解析:当n≥2时,an=Sn-Sn-1代入an=得,Sn-Sn-1=,变形整理得Sn-Sn-1=SnSn-1两边除以SnSn-1得,-=2,∴{}是首相为1,公差为2的等差数列∴=1+2(n-1)=2n-1,∴Sn=(n≥2),n=1也适合,

3、∴Sn=(n≥1)当n≥2时,an=Sn-Sn-1=-=-,n=1不满足此式,∴an={评析:本例将所给条件变形成,先求出的通项公式,再求出原数列的通项公式,条件变形是难点。二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f(n+1)=Af(n)(其中A为非零常数)形式,根据等比数列的定义知是等比数列,根据等比数列的通项公式,先求出的通项公式,再根据与,从而求出的通项公式。例3在数列{an}中,a1=2,an=an-12(n≥2),求数列{an}通项公式。解析:∵a1=2,an=an-12(n≥2

4、)>0,两边同时取对数得,lgan=2lgan-1∴=2,根据等比数列的定义知,数列{lgan}是首相为lg2,公比为2的等比数列,根据等比数列的通项公式得lgan=2n-1lg2=∴数列通项公式为an=评析:本例通过两边取对数,变形成形式,构造等比数列,先求出的通项公式,从而求出的通项公式。例4在数列{an}中,a1=1,an+1=4an+3n+1,求数列{an}通项公式。解析:设an+1+A(n+1)+B=4(an+An+B),(A、B为待定系数),展开得an+1=4an+3An+3B-A,与已知比较系数得{∴{∴an+1+(n+1)+=4(an+

5、n+),根据等比数列的定义知,数列{an+n+}是首项为,公比为q=3的等比数列,∴an+n+=×3n-1∴数列通项公式为an=×3n-1-n-评析:待定系数法是构造数列的常用方法。例5在数列{an}中,a1=1,an+1an=4n,求数列{an}通项公式。解析:∵an+1an=4n∴anan-1=4n-1两式相除得=4,∴a1,a3,a5……与a2,a4,a6……是首相分别为a1,a2,公比都是4的等比数列,又∵a1=1,an+1an=4n,∴a2=4∴an={练习:1.已知数列满足,,求解:由条件知,分别令,代入上式得个等式累乘之,即又,解:由条件

6、知,分别令,代入上式得个等式累乘之,即又,2.数列{a}满足a=1,a=a+1(n≥2),求数列{a}的通项公式。解:由a=a+1(n≥2)得a-2=(a-2),而a-2=1-2=-1,∴数列{a-2}是以为公比,-1为首项的等比数列∴a-2=-()∴a=2-()3.数列中,,求数列的通项公式。解:由得设比较系数得,解得或若取,则有∴是以为公比,以为首项的等比数列∴由逐差法可得===4.设各项均为正数的数列的前n项和为,对于任意正整数n,都有等式:成立,求的通项an.解:,∴,∵,∴.即是以2为公差的等差数列,且.∴(1)通过分解常数,可转化为特殊数列

7、{a+k}的形式求解。一般地,形如a=pa+q(p≠1,pq≠0)型的递推式均可通过待定系数法对常数q分解法:设a+k=p(a+k)与原式比较系数可得pk-k=q,即k=,从而得等比数列{a+k}。(2)通过分解系数,可转化为特殊数列的形式求解。这种方法适用于型的递推式,通过对系数p的分解,可得等比数列:设,比较系数得,可解得。3、构造法构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,联想出一种适当的辅助模型,进行命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式.(1)构

8、造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。