排列与组合2_精讲与习题解析(1)

排列与组合2_精讲与习题解析(1)

ID:20844801

大小:1.35 MB

页数:29页

时间:2018-10-17

排列与组合2_精讲与习题解析(1)_第1页
排列与组合2_精讲与习题解析(1)_第2页
排列与组合2_精讲与习题解析(1)_第3页
排列与组合2_精讲与习题解析(1)_第4页
排列与组合2_精讲与习题解析(1)_第5页
资源描述:

《排列与组合2_精讲与习题解析(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、排列与组合复习分类计数原理完成一件事,有n类办法,在第1类办法中,有m1种不同的方法,在第2类办法中,有m2种不同的方法……在第n类办法中,有mn种不同的方法,则完成这件事有N=m1+m2+……+mn种不同的方法分步计数原理完成一件事,需要分成n个步骤,在第1步中,有m1种不同的方法,在第2步中,有m2种不同的方法……在第n步中,有mn种不同的方法,则完成这件事有N=m1×m2×……×mn种不同的方法分类计数原理与分步计数原理之间的区别与联系1.分类计数原理中各类方法之间是互相独立的,每一类每一种方法都能直接完成这件事情,分步计数原理中,各个步骤之间是相互联系

2、的,依次完成所有步骤才能完成这件事情.2.分类计数原理的重点在一个“类”字,分步计数原理的重点在一个“步”字,应用加法原理时,要注意“类”与“类”之间的独立性和并列性,在各类办法中彼此是独立的,并列的.应用分步计数原理时,要注意“步”与“步”之间的连续性,做一件事需分成若干个步骤,每个步骤相继完成,最后才算做完整个工作练习1:书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的

3、取法?答案:N=m1+m2+m3=3+5+6=14.N=m1×m2×m3=90.N=3×5+3×6+5×6=63.练习2:由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法.根据乘法原理,得到可以组成的三位整数的个数是N=4×5×5=100.答:可以组成100个三位整数.练习3:求下列集合的元素个数.(1)M={(x,y)

4、x,y∈N*,x

5、+y≤6}(2)H={(x,y)}

6、x,y∈N*,1≤x≤4,1≤y≤5}解 :(1)分5类:(i)x=1,y有5种取法;(ii)x=2,y有4种取法;(iii)x=3,y有3种取法;(iv)x=4,y有2种取法;(v)x=5,y只有一种取法.因此M共有5+4+3+2+1=15个元素.(2)分两步:(i)先选x,有4种可能;(ii)再选y有5种可能.由乘法原理,H共有4×5=20个元素.从n个不同的元素中,任取A个元素,按照一定的顺序排成一列,叫做从n个不同的元素中取出A个元素的一个排列。排列与排列数所有排列的个数叫做排列数,用表示。判断下列几个问题是不是排列

7、问题?①从班级5名优秀团员中选出3人参加上午的团委会②1000本参考书中选出100本给100位同学每人一本③1000名来宾中选20名贵宾分别坐1~20号贵宾席解79(r+36)(r+36)1)由数字1,2,3,4,5组成没有重复数字的五位数,其中偶数共有个。2)用0,1,2,3,4,5组成没有重复数字的三位数,共有个。3)五名同学排成一排,其中的甲乙两同学必须站在两端,共有种不同排法。4810012例2例3若,则方程可表示多少个焦点在x轴上的相异椭圆.例4从1到6这六个数字中任取5个数字组成没有重复数字的五位数,且个位和百位必须是奇数,这样的五位数共有多少个?

8、万千百十个万千百十个万千百十个解法一:N==144个解法二:N=-=144个用1、2、3、4、5组成没有重复数字的四位数。(1)十位数字比个位数字大的数有多少个?(2)将这些数字按从小到大的顺序排列,2351是第几位?有条件的排列问题有条件的排列问题例5七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。a)若三个女孩要站在一起,有多少种不同的排法?解:将三个女孩看作一人与四个男孩排队,有种排法,而三个女孩之间有种排法,所以不同的排法共有:(种)。捆绑法有条件的排列问题七个家庭一起外出旅游,若其中四家是男孩,三家是女孩,

9、现将这七个小孩站成一排照相留念。b)若三个女孩要站在一起,四个男孩也要站在一起,有多少种不同的排法?不同的排法有:(种)说一说捆绑法一般适用于问题的处理。相邻有条件的排列问题七个家庭一起外出旅游,若其中四家是男孩,三家是女孩,现将这七个小孩站成一排照相留念。c)若三个女孩互不相邻,有多少种不同的排法?解:先把四个男孩排成一排有种排法,在每一排列中有五个空档(包括两端),再把三个女孩插入空档中有种方法,所以共有:(种)排法。有条件的排列问题七个家庭一起外出旅游,若其中四家是男孩,三家是女孩,现将这七个小孩站成一排照相留念。c)若三个女孩互不相邻,有多少种不同的排

10、法?插空法有条件的排列问题七个家庭一起

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。