欢迎来到天天文库
浏览记录
ID:20484011
大小:46.00 KB
页数:3页
时间:2018-10-13
《初一数学竞赛系列训练12答案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、上海市尚德实验学校杨晓Email:qdyangxiao@hotmail.com初一数学竞赛系列训练(12)答案1.5个点中任取2点,可以作4+3+2+1=10条直线,在一直线上的3个点中任取2点,可作2+1=3条,共可作10-3+1=8(条)故选C2.平面上3条直线可能平行或重合。故选D3.对于3条共点的直线,每条直线上有4个交点,截得3条不重叠的线段,3条直线共有9条不重叠的线段对于3条不共点的直线,每条直线上有5个交点,截得4条不重叠的线段,3条直线共有12条不重叠的线段。故共有21条不重叠的线段。故选D4.由个点中每次选取两个点连直线,可以画出条直线,若三点不在一条直线上
2、,可以画出3条直线,若四点不在一条直线上,可以画出6条直线,∴整理得∵n+9>0∴∴选B。5.直线EF、GH分别“截”平行直线AB、CD,各得2对同旁内角,共4对;直线AB、CD分别“截”相交直线EF、GH,各得6对同旁内角,共12对。因此图中共有同旁内角4+6=16对6.∵FD∥BE∴∠2=∠AGF∵∠AGC=∠1-∠3∴∠1+∠2-∠3=∠AGC+∠AGF=180°∴选B7.解:∵AB∥CD (已知) ∴∠BAD=∠CDA(两直线平行,内错角相等)∵∠1=∠2 (已知)∴∠BAD+∠1=∠CDA+∠2(等式性质)即∠EAD=∠FDA ∴AE∥FD ∴∠E=∠
3、F8.解:每两点可确定一条直线,这5点最多可组成10条直线,又每两条直线只有一个交点,所以共有交点个数为9+8+7+6+5+4+3+2+1=45(个)上海市尚德实验学校杨晓Email:qdyangxiao@hotmail.com又因平面上这5个点与其余4个点均有4条连线,这四条直线共有3+2+1=6个交点与平面上这一点重合应去掉,共应去掉5×6=30个交点,所以有交点的个数应为45-30=15个9.可分7个部分10.解∵AB∥CD∥EF∴∠APQ=∠DQG=∠FRG=110°同理∠PSQ=∠APS∴∠PSQ=∠APQ-∠SPQ=∠DQG-∠SPQ=110°-90°=20°11.
4、0个、1个或无数个1)若线段AB的垂直平分线就是L,则公共点的个数应是无数个;2)若AB^L,但L不是AB的垂直平分线,则此时AB的垂直平分线与L是平行的关系,所以它们没有公共点,即公共点个数为0个;3)若AB与L不垂直,那么AB的垂直平分线与直线L一定相交,所以此时公共点的个数为1个12.4条直线两两相交最多有1+2+3=6个交点13.证明:过E作EF∥BA∴∠2=∠A(两直线平行,内错角相等)DE∥CB,EF∥BA∴∠1=∠B(两个角的两边分别平行,这两个角相等)∴∠1+∠2=∠B+∠A(等式性质)即∠AED=∠A+∠B14.证明:分别过点E、F、G作AB的平行线EH、PF
5、、GQ,则AB∥EH∥PF∥GQ(平行公理)∵ AB∥EH∴ ∠ABE=∠BEH(两直线平行,内错角相等)同理:∠HEF=∠EFP ∠PFG=∠FGQ∠QGD=∠GDC∴ ∠ABE+∠EFP+∠PFG+∠GDC=∠BEH+∠HEF+∠FGQ+∠QGD(等式性质)即 ∠B+∠D+∠EFG=∠BEF+∠GFD15.证明:∵DE平分∠CDA CE平分∠BCD∴∠EDC=∠ADE∠ECD=∠BCE (角平分线定义)∴∠CDA+∠BCD=∠EDC+∠ADE+∠ECD+∠BCE=2(∠EDC+∠ECD)=180°∴ DA∥CB又∵ CB^AB∴ DA^AB16.两个圆最多有两个交点
6、,每条直线与两个圆最多有4个交点,三条直线最多有3个不同的交点,即最多交点个数为:2+4×3+3=1717.(1)2个圆相交有交点2×1=1个,上海市尚德实验学校杨晓Email:qdyangxiao@hotmail.com第3个圆与前两个圆相交最多增加2×2=4个交点,这时共有交点2+2×2=6个第4个圆与前3个圆相交最多增加2×3=6个交点,这时共有交点2+2×2+2×3=12个第5个圆与前4个圆相交最多增加2×4=8个交点∴ 5个圆两两相交最多交点个数为:2+2×2+2×3+2×4=20(2)2个圆相交将平面分成2个区域3个圆相看作第3个圆与前2个圆相交,最多有2×2=4个
7、不同的交点,这4个点将第3个圆分成4段弧,每一段弧将它所在的区域一分为二,故增加2×2=4块区域,这时平面共有区域:2+2×2=6块4个圆相看作第4个圆与前3个圆相交,最多有2×3=6个不同的交点,这6个点将第4个圆分成6段弧,每一段弧将它所在的区域一分为二,故增加2×3=6块区域,这时平面共有区域:2+2×2+2×3=12块5个圆相看作第5个圆与前4个圆相交,最多有2×4=8个不同的交点,这8个点将第5个圆分成8段弧,每一段弧将它所在的区域一分为二,故增加2×4=8块区域,这时平面最多共有
此文档下载收益归作者所有