第2讲 导数在研究函数中的应用师

第2讲 导数在研究函数中的应用师

ID:20302385

大小:1.15 MB

页数:13页

时间:2018-10-12

第2讲   导数在研究函数中的应用师_第1页
第2讲   导数在研究函数中的应用师_第2页
第2讲   导数在研究函数中的应用师_第3页
第2讲   导数在研究函数中的应用师_第4页
第2讲   导数在研究函数中的应用师_第5页
资源描述:

《第2讲 导数在研究函数中的应用师》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、第2讲导数在研究函数中的应用★知识梳理★1.函数的单调性与导数的关系一般地,函数的单调性与其导函数的正负有如下关系:在某个区间内,如果,那么函数在这个区间内;如果,那么函数在这个区间内.解析:单调递增;单调递减2.判别f(x0)是极大、极小值的方法若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的,是极大值;如果在两侧满足“左负右正”,则是的极小值点,是解析:极大值点;极小值.3.解题规律技巧妙法总结:求函数的极值的步骤:(1)确定函数的定义区间,求导数f′(x).(2)求方程f′(x)=0的根.(3)

2、用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值.4.求函数最值的步骤:(1)求出在上的极值.(2)求出端点函数值.(3)比较极值和端点值,确定最大值或最小值.★重难点突破★1.重点:熟悉利用导数处理单调性、极值与最值的一般思路,熟练掌握求常见函数的单调区间和极值与最值的方法2.难点:与参数相关单调性和极值最值问题3.重难点:借助导数研究函

3、数与不等式的综合问题(1)在求可导函数的极值时,应注意可导函数的驻点可能是它的极值点,也可能不是极值点。问题1.设,.令,讨论在内的单调性并求极值;点拨:根据求导法则有,13故,于是,2减极小值增列表如下:故知在内是减函数,在内是增函数,所以,在处取得极小值.(2)借助导数处理函数的单调性,进而研究不等关系关键在于构造函数.问题2.已知函数是上的可导函数,若在时恒成立.(1)求证:函数在上是增函数;(2)求证:当时,有.点拨:由转化为为增函数是解答本题关键.类似由转化为为增函数等思考问题的方法是我们必须学会的.(1)由得因为,所以在时恒成立,

4、所以函数在上是增函数.(2)由(1)知函数在上是增函数,所以当时,有成立,从而两式相加得★热点考点题型探析★考点1:导数与函数的单调性题型1.讨论函数的单调性例1(08广东高考)设,函数,,13,试讨论函数的单调性.【解题思路】先求导再解和【解析】对于,当时,函数在上是增函数;当时,函数在上是减函数,在上是增函数;对于,当时,函数在上是减函数;当时,函数在上是减函数,在上是增函数。【名师指引】解题规律技巧妙法总结:求函数单调区间的一般步骤.(1)求函数的导数(2)令解不等式,得的范围就是单调增区间;令解不等式,得的范围就是单调减区间(3)对照

5、定义域得出结论.[误区警示]求函数单调区间时,容易忽视定义域,如求函数的单调增区间,错误率高,请你一试,该题正确答案为.题型2.由单调性求参数的值或取值范围例2:若在区间[-1,1]上单调递增,求的取值范围.【解题思路】解这类题时,通常令(函数在区间上递增)或(函数在区间上递减),得出恒成立的条件,再利用处理不等式恒成立的方法获解.解析:又在区间[-1,1]上单调递增13在[-1,1]上恒成立即在[-1,1]的最大值为故的取值范围为【名师指引】:本题主要考查函数的单调性与导数正负值的关系,要特别注意导数值等于零的用法.题型3.借助单调性处理不

6、等关系例3.当,求证【解题思路】先移项,再证左边恒大于0解析:设函数当时,,故在递增,当时,,又,,即,故【名师指引】若要证的不等式两边是两类不同的基本函数,往往构造函数,借助于函数的单调性来证明【新题导练】.1.若函数f(x)=x3-ax2+1在(0,2)内单调递减,则实数a的取值范围是A.a≥3B.a=2C.a≤3D.0

7、.函数y=x3+x的单调增区间为A.(-∞,+∞)B.(0,+∞)C.(-∞,0)D.不存在解析:∵y′=3x2+1>0恒成立,∴y=x3+x在(-∞,+∞)上为增函数,没有减区间.答案:A3.已知函数,,设.(Ⅰ)求函数的单调区间;(Ⅱ)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;13解析:(I),∵,由,∴在上单调递增。由,∴在上单调递减。∴的单调递减区间为,单调递增区间为。(II),恒成立当时,取得最大值。∴,∴考点2:导数与函数的极值和最大(小)值.题型1.利用导数求函数的极值和最大(小)值例1.若函数在处取得极值

8、,则.【解题思路】若在附近的左侧,右侧,且,那么是的极大值;若在附近的左侧,右侧,且,那么是的极小值.[解析]因为可导,且,所以,解得.经验证当时,函数在处取得极大

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。