资源描述:
《数学建模在初中数学教学中的应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、【数学建模论文】数学建模在初中数学中的应用姓名:高军明专业:数学教育班级:12级在职教育硕士(1)班学号:03120046constructionqualityacceptanceandassessmentRegulation(ProfessionalEdition)(DL/T5210.2-2009~DL/T5210.8-2009);1.9thequalitycheckoutandevaluationofelectricequipmentinstallationengineeringcode(DL/T5161.1-
2、2002~5161.17-2002);1.10thenormsofconstructionsupervision,theelectricpowerconstructionsupervisionregulations7数学建模在初中数学中的应用摘要:数学模型就是根据研究目的,对所研究的过程和现象的主要特征、主要关系,采用形式化的数学语言,概括地、近似地表达出来的一种结构,即把所要研究的实际问题,通过数学抽象构造出相应的数学模型,再通过数学模型的研究使原问题获得解决的过程.数学模型是数学知识与数学应用的桥梁,随着数学教
3、学的不断深入,重视数学知识与现实生活的联系,发展学生的数学应用意识和应用能力,已成为数学教育发展的趋势。数学建模将实际问题抽象转化为数学模型,然后用数学方法求解模型,使问题得到解答,能够帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识与实践能力。本文谈谈如何在初中数学教学中渗透数学建模的思想与思维过程。关键字:数学建模;中学数学建模;数学;应用什么是数学模型? 我们把某种事物系统的主要特征、主要关系抽象出来,用数学语言概括地或近似地表述出来的一种数学结构,称为数学模型。数学模型就是根据研究目的,对
4、所研究的过程和现象的主要特征、主要关系,采用形式化的数学语言,概括地、近似地表达出来的一种结构,即把所要研究的实际问题,通过数学抽象构造出相应的数学模型,再通过数学模型的研究使原问题获得解决的过程.数学建模是建立数学模型并用它解决问题这一过程的简称,数学建模就是应用建立数学模型来解决各种实际问题的方法,也就是通过对实际问题的抽象、简化,确定变量和参数,并应用某些“规律”建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释、验证所得到的解,从而确定能否用于解决实际问题的多次循环、不断深化的
5、过程。数学建模将实际问题抽象转化为数学模型,然后用数学方法求解模型,使问题得到解答,能够帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识与实践能力.本文谈谈如何在应用题的教学中渗透数学建模的思想与思维过程.什么是中学数学建模?这里的“中学数学建模”有两重含义,一是按数学意义上的理解、在中学中做的数学建模。主要指基于中学范围内的数学知识所进行的建模活动,同其它数学建模一样,它仍以现实世界的具体问题为解决对象,但要求运用的数学知识在中学生认知水平内,专业知识不能要求太高,并且要有一定的趣味性和教学价值。
6、二是按课程意义理解,它是本文要展开讨论的,一种要在中学中实施的特殊的课程形态。它是一种以“问题引领、操作实践”constructionqualityacceptanceandassessmentRegulation(ProfessionalEdition)(DL/T5210.2-2009~DL/T5210.8-2009);1.9thequalitycheckoutandevaluationofelectricequipmentinstallationengineeringcode(DL/T5161.1-2002~5
7、161.17-2002);1.10thenormsofconstructionsupervision,theelectricpowerconstructionsupervisionregulations7为特征的活动型课程。学生要通过经历建模特有的过程,真实地解决一个实际问题,由此积累做数学、学数学、用数学的经验,提升对数学及其价值的认识。其设置目的是希望通过教师对数学建模有目标、有层次的教与学的设计和指导,影响学生的学习过程,改变传统的学习方式,实现激发学生自主思考,促进学生合作交流,提高学生学习兴趣,发展学生创
8、新精神,培养学生应用意识和应用数学的能力,最终使学生提升适应现代社会要求的可持续发展的素养。一、数学建模思想的基本步骤及意义数学建模的实质就是应用数学知识将复杂无章的实际问题抽象成符合逻辑的数学关系,然后将所有的数学关系组建成相应的数学模型的过程。数学模型建立的具体流程如下:实际问题→假设化简模型→建立数学模型↑↓实际应用←模型验证与评价←模型求解1、合理分