资源描述:
《2.5列联表的独立性检验【课件ppt】》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.5列联表的独立性检验一、二维列联表列表如下:令:吸烟与肺癌列联表患肺癌不患肺癌总计吸烟603292不吸烟31114总计6343106为了调查吸烟是否对肺癌有影响,对63位肺癌患者及43位非患者(对照组)调查了其中的吸烟人数.2×2列联表二、二维列联表的独立性检验列表如下:称为Pearson统计量检验统计量例1随机抽取某校男生35名,女生31,进行体育达标考核,结果如下表问体育达标水平是否与性别有关?体育达标考核情况表达标未达标合计男152035女131831合计283866体育达标水平与性别无关体育达标水平与性别有关(1)建立假设其结论为:体育达标水平与性别无关.因此在0.05显著
2、性水平下,接受原假设.R函数chisq.test()>x<-matrix(c(15,13,20,18),nr=2)>chisq.test(x,correct=F)R程序如下输出结果为Pearson'sChi-squaredtestdata:xX-squared=0.0057,df=1,p-value=0.9397因此在0.05显著性水平下,接受原假设.92页例2.14自己看2.5.2Fisher精确检验不满足时,用Pearson近似效果很差,一般采用Fisher精确检验.在使用Pearson独立性检验时,要注意格子的期望频数小于5的格子数不超过总格子数的20%,且没有一个格子的期望频数
3、小于1Fisher精确检验对于单元频数小的表格特别适用四表格的Fisher精确检验频数四表格合计对应的概率四表格1合计假设边缘频数固定分别服从二项分布表示有属性A的个体中有属性B的条件概率表示没有属性A的个体中有属性B的条件概率则属性A和属性B相互独立即有属性A的个体中有属性B的个体的频率与没有属性A的个体中有属性B的个体的频率应该没有显著的差异.即有表示有属性A的个体中有属性B的比例高表示有属性A的个体中有属性B的比例低即即四表格的检验问题,即属性A和B的独立性检验问题有Fisher精确检验的统计量假设边缘频数都固定事实上,确定了,其它三个值也就确定了则有下面四种取值23324150
4、30211203利用公式可以计算出取2,3,4,5的概率在独立的原假设下,取这些值的概率是不同的,但各种取值都不会是小概率事件,过大或过小都可能拒绝原假设拒绝域形式为Fisher精确检验的计算比较复杂,所以一般用于n比较小的四表格.例:为了解某种新药的疗效是否提高,将42位病人随机分组注射两种药物,试验结果如下表所示药物有效无效合计新8210旧141832合计222042R程序如下新药疗效没有提高新药疗效有提高>x<-matrix(c(8,14,2,18),nr=2)>fisher.test(x,alternative="greater")输出结果为Fisher'sExactTestf
5、orCountDatadata:xp-value=0.04849alternativehypothesis:trueoddsratioisgreaterthan195percentconfidenceinterval:1.010589Infsampleestimates:oddsratio4.950963拒绝原假设,认为备则假设成立.优势比优势比:属性A时,有属性B与没有属性B的优势.称条件概率与之比为当个体有为当个体没有属性A时,有属性B与没有属性B的优势,称这两个优势的比为优势比下列结论成立:如果在有属性A的个体中有B的比例高,则优比OR>1;如果在有属性A的个体中有B的比例低,则
6、优比OR<1如果属性A和属性B相互独立,则优比OR=1.优势比大于1与新药较旧药疗效有提高等价.三、三维列联表关于某项政策调查所得结果观点:赞成观点:不赞成低收入中等收入高收入低收入中等收入高收入男201055810女25157279大致可以看出女性赞成的多,低收入赞成的多三维列联表观点赞成低收入中等收入高收入男202015女25157观点不赞成低收入中等收入高收入男5810女279性别男低收入中等收入高收入赞成201015不赞成5810性别女低收入中等收入高收入赞成25157不赞成279低收入中等收入高收入男252825女272216低收入中等收入高收入赞成201015不赞成5810
7、是是否否收入的“低”、“中”、“高”用代码1、2、3代表;性别的“女”、“男”用代码0、1代表;观点“赞成”和“不赞成”用1、0代表。有些计算机数据对于这些代码的形式不限(可以是数字,也可以是字符串)。七.在SPSS数据表中的形式表是二维的,用变量和样本值表示先将定性变量数量化:小结1.非参数检验在假设检验中不对参数作明确的推断,也不涉及样本取自何种分布的总体。它的适用范围较广。常用的非参方法较为简便。易于理解掌握。当资料适用参数检验方法时,用