the intrinsic hodge theory of p-adic hyperbolic curves (nara 1998)

the intrinsic hodge theory of p-adic hyperbolic curves (nara 1998)

ID:15175413

大小:78.11 KB

页数:10页

时间:2018-08-01

the intrinsic hodge theory of p-adic hyperbolic curves (nara 1998)_第1页
the intrinsic hodge theory of p-adic hyperbolic curves (nara 1998)_第2页
the intrinsic hodge theory of p-adic hyperbolic curves (nara 1998)_第3页
the intrinsic hodge theory of p-adic hyperbolic curves (nara 1998)_第4页
the intrinsic hodge theory of p-adic hyperbolic curves (nara 1998)_第5页
资源描述:

《the intrinsic hodge theory of p-adic hyperbolic curves (nara 1998)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TheIntrinsicHodgeTheoryofp-adicHyperbolicCurvesbyShinichiMochizukiContents:§1.UniformizationTheoryasaHodgeTheoryatArithmeticPrimes(A.)UniformizationasaCatalogueofRationalPoints(B.)“Intrinsic”HodgeTheories(C.)CompletionatArithmeticPrimes§2.ThePhysicalAspect:EmbeddingbyAutom

2、orphicForms(A.)TheComplexCase(B.)TheArithmeticFundamentalGroup(C.)TheMainTheorem(D.)ComparisonwiththeCaseofAbelianVarieties§3.TheModularAspect:CanonicalFrobeniusActions(A.)TheComplexCase(B.)Teichm¨ullerTheoryinCharacteristicp(C.)Canonicalp-adicLiftings§1.UniformizationTheo

3、ryasaHodgeTheoryatArithmeticPrimes(A.)UniformizationasaCatalogueofRationalPointsWebeginourdiscussionbyposingthefollowingelementaryproblemconcerningalge-braicvarietiesoverthecomplexnumbers(where,roughlyspeaking,an“algebraicvarietyoverthecomplexnumbers”isageometricobjectdefin

4、edbypolynomialequationswithcoefficientswhicharecomplexnumbers):Problem:GivenanalgebraicvarietyZoverC,itispossibletogivesomesortofnaturalexplicitcatalogueoftherationalpointsZ(C)ofZ?1Togainasenseofwhatismeantbytheexpression“anaturalexplicitcatalogue,”itisusefultobeginbythinkin

5、gaboutsomebasicexamples.Perhapsthesimplestnontrivialexamplesofalgebraicvarietiesareplanecurves,i.e.,subvarietiesofA2(two-dimensionalCaffinespaceoverC)definedbyasinglepolynomialequationf(X,Y)=0intwovariables.Inthiscase,thesetofrationalpointsZ(C)ofthecorrespondingvarietyZisgive

6、nbyZ(C)={(x,y)∈C2

7、f(x,y)=0}Moreover,wecanclassifyplanecurvesbythedegreeofthedefiningequationf(X,Y).WethenseethattheresultingsetsZ(C)maybeexplicitlydescribedasfollows:(1.)TheLinearCase(deg(f)=1):Uptocoordinatetransformations,thisisthecasegivenbytheequationf(X,Y)=X.Inthiscase

8、,wethenobtainanexplicitcatalogueoftherationalpointsby:∼(0,?):C→Z(C)(i.e.,mappingz∈Cto(0,z)∈Z(C)).(2.)TheQuadraticCase(deg(f)=2):Uptocoordinatetransformations(andrulingoutdegeneratecases),weseethatthisisessentiallythecasewheretheequationf(X,Y)=X·Y−1.Inthiscase,anexplicitcat

9、alogueisgivenbytheexponentialmap:exp:C→Z(C)=C×(Infact,themapmaybedefinedintrinsically,with

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。