资源描述:
《the intrinsic hodge theory of p-adic hyperbolic curves (nara 1998)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、TheIntrinsicHodgeTheoryofp-adicHyperbolicCurvesbyShinichiMochizukiContents:§1.UniformizationTheoryasaHodgeTheoryatArithmeticPrimes(A.)UniformizationasaCatalogueofRationalPoints(B.)“Intrinsic”HodgeTheories(C.)CompletionatArithmeticPrimes§2.ThePhysicalAspect:EmbeddingbyAutom
2、orphicForms(A.)TheComplexCase(B.)TheArithmeticFundamentalGroup(C.)TheMainTheorem(D.)ComparisonwiththeCaseofAbelianVarieties§3.TheModularAspect:CanonicalFrobeniusActions(A.)TheComplexCase(B.)Teichm¨ullerTheoryinCharacteristicp(C.)Canonicalp-adicLiftings§1.UniformizationTheo
3、ryasaHodgeTheoryatArithmeticPrimes(A.)UniformizationasaCatalogueofRationalPointsWebeginourdiscussionbyposingthefollowingelementaryproblemconcerningalge-braicvarietiesoverthecomplexnumbers(where,roughlyspeaking,an“algebraicvarietyoverthecomplexnumbers”isageometricobjectdefin
4、edbypolynomialequationswithcoefficientswhicharecomplexnumbers):Problem:GivenanalgebraicvarietyZoverC,itispossibletogivesomesortofnaturalexplicitcatalogueoftherationalpointsZ(C)ofZ?1Togainasenseofwhatismeantbytheexpression“anaturalexplicitcatalogue,”itisusefultobeginbythinkin
5、gaboutsomebasicexamples.Perhapsthesimplestnontrivialexamplesofalgebraicvarietiesareplanecurves,i.e.,subvarietiesofA2(two-dimensionalCaffinespaceoverC)definedbyasinglepolynomialequationf(X,Y)=0intwovariables.Inthiscase,thesetofrationalpointsZ(C)ofthecorrespondingvarietyZisgive
6、nbyZ(C)={(x,y)∈C2
7、f(x,y)=0}Moreover,wecanclassifyplanecurvesbythedegreeofthedefiningequationf(X,Y).WethenseethattheresultingsetsZ(C)maybeexplicitlydescribedasfollows:(1.)TheLinearCase(deg(f)=1):Uptocoordinatetransformations,thisisthecasegivenbytheequationf(X,Y)=X.Inthiscase
8、,wethenobtainanexplicitcatalogueoftherationalpointsby:∼(0,?):C→Z(C)(i.e.,mappingz∈Cto(0,z)∈Z(C)).(2.)TheQuadraticCase(deg(f)=2):Uptocoordinatetransformations(andrulingoutdegeneratecases),weseethatthisisessentiallythecasewheretheequationf(X,Y)=X·Y−1.Inthiscase,anexplicitcat
9、alogueisgivenbytheexponentialmap:exp:C→Z(C)=C×(Infact,themapmaybedefinedintrinsically,with