correspondences on hyperbolic curves

correspondences on hyperbolic curves

ID:14467579

大小:159.00 KB

页数:18页

时间:2018-07-28

correspondences on hyperbolic curves_第1页
correspondences on hyperbolic curves_第2页
correspondences on hyperbolic curves_第3页
correspondences on hyperbolic curves_第4页
correspondences on hyperbolic curves_第5页
资源描述:

《correspondences on hyperbolic curves》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、CorrespondencesonHyperbolicCurvesbyShinichiMochizuki§0.IntroductionThepurposeofthispaperistoproveseveraltheoremsconcerningthefinitenessand,moregenerally,thescarcityofcorrespondencesonhyperboliccurvesincharacteristiczeroandtocommentonthemeaningoftheseresults,especiallyrelativetotheanalogywithabelian

2、varieties.Weconsiderhyperboliccurvesoveranalgebraicallyclosedfieldkofcharacteristiczero.WecalltwosuchcurvesX,YisogenousifthereexistsanonemptyschemeC,togetherwithfinite´etalemorphismsC→X,C→Y.(Werefertosuchapair(C→X,C→Y)asacorrespondencefromXtoY.)Itiseasytoseethattherelationofisogenyisanequivalencerel

3、ationonthesetofisomorphismclassesofhyperboliccurvesoverk.Thenthefirstmainresultofthispaper(cf.Lemma4.1andTheorem4.2inthetext)isthefollowing:TheoremA.Letkbeanalgebraicallyclosedfieldofcharacteristiczero.LetXbeahyperboliccurveoverk.Let(g,r)beapairofnonnegativeintegerssatisfying2g−2+r>0.Then(uptois

4、omorphism)thereareonlyfinitelymanyhyperboliccurvesoverkoftype(g,r)thatareisogenoustoX.Moreover,ifKisanalgebraicallyclosedfieldextensionofk,thenanycurvewhichisisogenoustoXoverKisdefinedoverkandalreadyisogenoustoXoverk.Thisresultis,technicallyspeaking,arathertrivialconsequenceofhighlynontrivialresult

5、sofMargulisandTakeuchi([Marg],[Take]).Moreover,itispossiblethatTheoremAhasbeenknowntomanyexpertsforsometime,butthattheysimplyneverbotheredtowriteitdown.Asfortheauthor,IwasdimlyawareofTheoremAforsometime,withouthavingcheckedthedetailsoftheproofofit,untilIwasaskedexplicitlyaboutthefinitenessstatedinT

6、heoremAbyProf.FransOortduringmystayatUtrechtUniversityinNovember1996.IwasthenencouragedbyProf.Oorttowritedownthedetails;whencethepresentpaper.Infact,forgeneralcurves,wecansaymore:Indeed,let(Mg,r)kdenotethemodulistackofr-pointedsmooth(proper)curvesofgenusg.Here,thermarkedpointsareunordered.(Notetha

7、tthisdiffersslightlyfromtheusualconvention.)Thecomplementofthedivisorofmarkedpointsofsuchacurvewillbeahyperboliccurveoftype(g,r).Thus,weshallalsorefer(byslightabuseofterminology)to(Mg,r)kasthemodulistackofhyperbol

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。