资源描述:
《correspondences on hyperbolic curves》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、CorrespondencesonHyperbolicCurvesbyShinichiMochizuki§0.IntroductionThepurposeofthispaperistoproveseveraltheoremsconcerningthefinitenessand,moregenerally,thescarcityofcorrespondencesonhyperboliccurvesincharacteristiczeroandtocommentonthemeaningoftheseresults,especiallyrelativetotheanalogywithabelian
2、varieties.Weconsiderhyperboliccurvesoveranalgebraicallyclosedfieldkofcharacteristiczero.WecalltwosuchcurvesX,YisogenousifthereexistsanonemptyschemeC,togetherwithfinite´etalemorphismsC→X,C→Y.(Werefertosuchapair(C→X,C→Y)asacorrespondencefromXtoY.)Itiseasytoseethattherelationofisogenyisanequivalencerel
3、ationonthesetofisomorphismclassesofhyperboliccurvesoverk.Thenthefirstmainresultofthispaper(cf.Lemma4.1andTheorem4.2inthetext)isthefollowing:TheoremA.Letkbeanalgebraicallyclosedfieldofcharacteristiczero.LetXbeahyperboliccurveoverk.Let(g,r)beapairofnonnegativeintegerssatisfying2g−2+r>0.Then(uptois
4、omorphism)thereareonlyfinitelymanyhyperboliccurvesoverkoftype(g,r)thatareisogenoustoX.Moreover,ifKisanalgebraicallyclosedfieldextensionofk,thenanycurvewhichisisogenoustoXoverKisdefinedoverkandalreadyisogenoustoXoverk.Thisresultis,technicallyspeaking,arathertrivialconsequenceofhighlynontrivialresult
5、sofMargulisandTakeuchi([Marg],[Take]).Moreover,itispossiblethatTheoremAhasbeenknowntomanyexpertsforsometime,butthattheysimplyneverbotheredtowriteitdown.Asfortheauthor,IwasdimlyawareofTheoremAforsometime,withouthavingcheckedthedetailsoftheproofofit,untilIwasaskedexplicitlyaboutthefinitenessstatedinT
6、heoremAbyProf.FransOortduringmystayatUtrechtUniversityinNovember1996.IwasthenencouragedbyProf.Oorttowritedownthedetails;whencethepresentpaper.Infact,forgeneralcurves,wecansaymore:Indeed,let(Mg,r)kdenotethemodulistackofr-pointedsmooth(proper)curvesofgenusg.Here,thermarkedpointsareunordered.(Notetha
7、tthisdiffersslightlyfromtheusualconvention.)Thecomplementofthedivisorofmarkedpointsofsuchacurvewillbeahyperboliccurveoftype(g,r).Thus,weshallalsorefer(byslightabuseofterminology)to(Mg,r)kasthemodulistackofhyperbol