categories of hyperbolic riemann surfaces

categories of hyperbolic riemann surfaces

ID:15165121

大小:289.79 KB

页数:38页

时间:2018-08-01

categories of hyperbolic riemann surfaces_第1页
categories of hyperbolic riemann surfaces_第2页
categories of hyperbolic riemann surfaces_第3页
categories of hyperbolic riemann surfaces_第4页
categories of hyperbolic riemann surfaces_第5页
资源描述:

《categories of hyperbolic riemann surfaces》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、CONFORMALANDQUASICONFORMALCATEGORICALREPRESENTATIONOFHYPERBOLICRIEMANNSURFACESShinichiMochizukiAugust2006Inthispaper,weconsidervariouscategoriesofhyperbolicRiemannsur-facesandshow,invariouscases,thattheconformalorquasiconformalstructureoftheRi

2、emannsurfacemaybereconstructed,uptopossibleconfusionbetweenholo-morphicandanti-holomorphicstructures,inanaturalwayfromsuchacategory.Thetheoryexposedinthepresentpaperismotivatedpartlybyaclassicalresultconcern-ingthecategoricalrepresentationofsobertopolo

3、gicalspaces,partlybypreviousworkoftheauthorconcerningthecategoricalrepresentationofarithmeticlogschemes,andpartlybyacertainanalogywithp-adicanabeliangeometry—ananalogywhichthetheoryofthepresentpaperservestorendermoreexplicit.Contents:Introduction§0.Not

4、ationsandConventions§1.ReconstructionviatheUpperHalf-PlaneUniformization§2.CategoriesofParallelograms,Rectangles,andSquaresAppendix:QuasiconformalLinearAlgebraIntroductionInthispaper,wecontinueourstudy[cf.,[Mzk2],[Mzk10]]ofthetopicofrepresentingvarious

5、objectsthatappearinconventionalarithmeticgeometrybymeansofcategories.Asdiscussedin[Mzk2],[Mzk10],thispointofviewispartiallymotivatedbytheanabelianphilosophyofGrothendieck[cf.,e.g.,[Mzk3],[Mzk4],[Mzk5]],and,inparticular,bythemorerecentworkoftheauthorona

6、bsoluteanabeliangeometry[cf.[Mzk6],[Mzk7],[Mzk8],[Mzk9],[Mzk11],[Mzk12]].Onewaytothinkaboutanabeliangeometryisthatitconcernstheissueofrepresentingschemesbymeansofcategories[i.e.,Galoiscategories]thatcapturecertainaspectsofthe[´etale]topologyofthescheme

7、[i.e.,itsfundamentalgroup].Fromthispointofview,anotherimportant,albeitelementary,exampleoftheissue2000MathematicalSubjectClassification.14H55,30F60.TypesetbyAMS-TEX12SHINICHIMOCHIZUKIofrepresentinga“space”bymeansofa“categoryoftopologicalorigin”isthewell

8、-knownexampleofthecategoryofopensubsetsofasobertopologicalspace[cf.,e.g.,[Mzk2],Theorem1.4;[Mzk10],Proposition4.1].Insomesense,thisexampleistheexamplethatmotivatedtheconstructionofthecategoriesappearinginthepresentpaper.Themainresultsof

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。