资源描述:
《correspondences on hyperbolic curves》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、CorrespondencesonHyperbolicCurvesbyShinichiMochizuki§0.IntroductionThepurposeofthispaperistoproveseveraltheoremsconcerningthefinitenessand,moregenerally,thescarcityofcorrespondencesonhyperboliccurvesincharacteristiczeroandtocommentonthemeaningoftheseresults,especiallyrelativetotheanalogywit
2、habelianvarieties.Weconsiderhyperboliccurvesoveranalgebraicallyclosedfieldkofcharacteristiczero.WecalltwosuchcurvesX,YisogenousifthereexistsanonemptyschemeC,togetherwithfinite´etalemorphismsC→X,C→Y.(Werefertosuchapair(C→X,C→Y)asacorrespondencefromXtoY.)Itiseasytoseethattherelationofisogenyis
3、anequivalencerelationonthesetofisomorphismclassesofhyperboliccurvesoverk.Thenthefirstmainresultofthispaper(cf.Lemma4.1andTheorem4.2inthetext)isthefollowing:TheoremA.Letkbeanalgebraicallyclosedfieldofcharacteristiczero.LetXbeahyperboliccurveoverk.Let(g,r)beapairofnonnegativeintegerssatisfyi
4、ng2g−2+r>0.Then(uptoisomorphism)thereareonlyfinitelymanyhyperboliccurvesoverkoftype(g,r)thatareisogenoustoX.Moreover,ifKisanalgebraicallyclosedfieldextensionofk,thenanycurvewhichisisogenoustoXoverKisdefinedoverkandalreadyisogenoustoXoverk.Thisresultis,technicallyspeaking,arathertrivialcon
5、sequenceofhighlynontrivialresultsofMargulisandTakeuchi([Marg],[Take]).Moreover,itispossiblethatTheoremAhasbeenknowntomanyexpertsforsometime,butthattheysimplyneverbotheredtowriteitdown.Asfortheauthor,IwasdimlyawareofTheoremAforsometime,withouthavingcheckedthedetailsoftheproofofit,untilIwasa
6、skedexplicitlyaboutthefinitenessstatedinTheoremAbyProf.FransOortduringmystayatUtrechtUniversityinNovember1996.IwasthenencouragedbyProf.Oorttowritedownthedetails;whencethepresentpaper.Infact,forgeneralcurves,wecansaymore:Indeed,let(Mg,r)kdenotethemodulistackofr-pointedsmooth(proper)curvesofg
7、enusg.Here,thermarkedpointsareunordered.(Notethatthisdiffersslightlyfromtheusualconvention.)Thecomplementofthedivisorofmarkedpointsofsuchacurvewillbeahyperboliccurveoftype(g,r).Thus,weshallalsorefer(byslightabuseofterminology)to(Mg,r)kasthemodulistackofhyperbol