Hodge Theory on Differentiable Manifolds英文

Hodge Theory on Differentiable Manifolds英文

ID:40849896

大小:1.34 MB

页数:33页

时间:2019-08-08

Hodge Theory on Differentiable Manifolds英文_第1页
Hodge Theory on Differentiable Manifolds英文_第2页
Hodge Theory on Differentiable Manifolds英文_第3页
Hodge Theory on Differentiable Manifolds英文_第4页
Hodge Theory on Differentiable Manifolds英文_第5页
资源描述:

《Hodge Theory on Differentiable Manifolds英文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、HodgeTheoryonDifferentiableManifoldsThisappendixismeanttoremindthereaderofafewbasicdefinitionsandfactsfromdifferentialgeometry,butitcannotreplaceanintroductiontothesub-ject.Weusetheopportunitytointroducetherelatednotationsusedthrough-outthetext.Noproofsaregiven,thematerialisfarfrombeingcompleteandt

2、hereaderisadvisedtogobacktoanyofthestandardtextbooksfordetails.fcDefinitionA.0.1Anm-dimensionalC-manifoldisatopologicalspaceMtogetherwithanopencoveringM=[jUiandhomeomorphisms

3、

4、ucedifferentiablefunctionsonM.ByCMwedenotethesheafofdifferentiablefunctions,i.e.foranyopensubsetUCMthevalueofCMonUisthespaceofdifferentiablelfunctions/:U—>H.,i.e.functionssuchthat/o(p~:M.isdifferentiableforanychart(Ui,

5、manifolds.Inparticular,thereisthestalkCM,Xofthesheafofdifferentiablefunctionsateverypointx€M.ThetangentspaceTXMofMatthepointx(EMcanbedennedasTxM:=DerR(CM,x,K),thevectorspaceofderivationsD:CM,X—»K,i-e.ofM-linearmapssatisfyingD{f•g)=f(x)•D(g)+D(f)•g{x).'E.g.anycurve7:(-e,e)-»Mwith7(0)=xdefinesatangen

6、tvectorD1by-D7(/)=(d(foj)/dt)(O).282AHodgeTheoryonDifferentiableManifoldsAllthetangentspacesTXMgluetothetangentbundleTM={JxeMTXMwhichisanexampleofadifferentiablerealvectorbundleonM.DefinitionA.0.2LetMbeadifferentiablemanifold.AdifferentiablevectorbundleofrankronMconsistsofadifferentiablemanifoldE,a

7、differen-tiablemap•K:E—>M,andthestructureofarealvectorspaceonanyfibreE(x):=1TT~(X),suchthatthereexistsanopencoveringM=(JUianddif-lrfeomorphismsipi'•n~(Ui)—*UixRwithpr^.o^=nandsuchthatforall1x£Uithemapipi(x)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。