欢迎来到天天文库
浏览记录
ID:15165014
大小:283.44 KB
页数:41页
时间:2018-08-01
《a survey of the hodge-arakelov theory of elliptic curves i》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、ASurveyoftheHodge-ArakelovTheoryofEllipticCurvesIShinichiMochizukiOctober2000Abstract:ThepurposeofthepresentmanuscriptistogiveasurveyoftheHodge-Arakelovtheoryofellipticcurves(cf.[Mzk1,2])—i.e.,asortof“Hodgetheoryofellipticcurves”analogoustotheclassicalcomplexandp-adicHodgetheories,bu
2、twhichexistsintheglobalarithmeticframeworkofArakelovtheory—asthistheoryex-istedatthetimeoftheworkshopon“GaloisActionsandGeometry”heldattheMathematicalSciencesResearchInstitute(MSRI)atBerkeley,USA,inOctober1999.Sincethen,variousfurtherimportantdevelopmentshaveoccurredinthistheory(cf.[
3、Mzk3,4,5],etc.),butweshallnotdiscussthesedevelopmentsindetailinthepresentmanuscript.Contents:§1.TheDiscretizationofLocalHodgeTheories§1.1.TheMainTheorem§1.2.TechnicalRoots§1.3.ConceptualRoots§1.4.TheArithmeticKodaira-SpencerMorphism§1.5.FutureDirections§2.TheThetaConvolution§2.1.Back
4、ground§2.2.StatementoftheMainTheoremTypesetbyAMS-TEX12SHINICHIMOCHIZUKISection1:TheDiscretizationofLocalHodgeTheories§1.1.TheMainTheoremThefundamentalresultoftheHodge-ArakelovtheoryofellipticcurvesisaComparisonTheorem(cf.TheoremAbelow)forellipticcurves,whichstatesroughlythat:Thespace
5、of“polynomialfunctions”ofdegree(roughly)6、sticzero(cf.TheoremA).Forellipticcurvesinmixedcharacteristicanddegeneratingellipticcurves,thisstatementmaybemadeprecise(i.e.,therestrictionmapbecomesanisomorphism)ifonemodifiesthe“integralstructure”onthespaceofpolynomialfunctionsinanappropriatefashion(cf.TheoremA).Similarly,inthecaseo7、fellipticcurvesoverthecomplexnumbers,onecanaskwhetherornotoneobtainsanisometryifoneputsnaturalHermitianmetricsonthespacesinvolved.In[Mzk1],wealsocomputewhatmodificationtothesemetricsisnecessarytoobtainanisometry(orsomethingveryclosetoanisometry).Incharacteristiczero,theuniversalextens8、ionofanellip
6、sticzero(cf.TheoremA).Forellipticcurvesinmixedcharacteristicanddegeneratingellipticcurves,thisstatementmaybemadeprecise(i.e.,therestrictionmapbecomesanisomorphism)ifonemodifiesthe“integralstructure”onthespaceofpolynomialfunctionsinanappropriatefashion(cf.TheoremA).Similarly,inthecaseo
7、fellipticcurvesoverthecomplexnumbers,onecanaskwhetherornotoneobtainsanisometryifoneputsnaturalHermitianmetricsonthespacesinvolved.In[Mzk1],wealsocomputewhatmodificationtothesemetricsisnecessarytoobtainanisometry(orsomethingveryclosetoanisometry).Incharacteristiczero,theuniversalextens
8、ionofanellip
此文档下载收益归作者所有