a survey of the hodge-arakelov theory of elliptic curves i

a survey of the hodge-arakelov theory of elliptic curves i

ID:15165014

大小:283.44 KB

页数:41页

时间:2018-08-01

a survey of the hodge-arakelov theory of elliptic curves i_第1页
a survey of the hodge-arakelov theory of elliptic curves i_第2页
a survey of the hodge-arakelov theory of elliptic curves i_第3页
a survey of the hodge-arakelov theory of elliptic curves i_第4页
a survey of the hodge-arakelov theory of elliptic curves i_第5页
资源描述:

《a survey of the hodge-arakelov theory of elliptic curves i》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ASurveyoftheHodge-ArakelovTheoryofEllipticCurvesIShinichiMochizukiOctober2000Abstract:ThepurposeofthepresentmanuscriptistogiveasurveyoftheHodge-Arakelovtheoryofellipticcurves(cf.[Mzk1,2])—i.e.,asortof“Hodgetheoryofellipticcurves”analogoustotheclassicalcomplexandp-adicHodgetheories,bu

2、twhichexistsintheglobalarithmeticframeworkofArakelovtheory—asthistheoryex-istedatthetimeoftheworkshopon“GaloisActionsandGeometry”heldattheMathematicalSciencesResearchInstitute(MSRI)atBerkeley,USA,inOctober1999.Sincethen,variousfurtherimportantdevelopmentshaveoccurredinthistheory(cf.[

3、Mzk3,4,5],etc.),butweshallnotdiscussthesedevelopmentsindetailinthepresentmanuscript.Contents:§1.TheDiscretizationofLocalHodgeTheories§1.1.TheMainTheorem§1.2.TechnicalRoots§1.3.ConceptualRoots§1.4.TheArithmeticKodaira-SpencerMorphism§1.5.FutureDirections§2.TheThetaConvolution§2.1.Back

4、ground§2.2.StatementoftheMainTheoremTypesetbyAMS-TEX12SHINICHIMOCHIZUKISection1:TheDiscretizationofLocalHodgeTheories§1.1.TheMainTheoremThefundamentalresultoftheHodge-ArakelovtheoryofellipticcurvesisaComparisonTheorem(cf.TheoremAbelow)forellipticcurves,whichstatesroughlythat:Thespace

5、of“polynomialfunctions”ofdegree(roughly)

6、sticzero(cf.TheoremA).Forellipticcurvesinmixedcharacteristicanddegeneratingellipticcurves,thisstatementmaybemadeprecise(i.e.,therestrictionmapbecomesanisomorphism)ifonemodifiesthe“integralstructure”onthespaceofpolynomialfunctionsinanappropriatefashion(cf.TheoremA).Similarly,inthecaseo

7、fellipticcurvesoverthecomplexnumbers,onecanaskwhetherornotoneobtainsanisometryifoneputsnaturalHermitianmetricsonthespacesinvolved.In[Mzk1],wealsocomputewhatmodificationtothesemetricsisnecessarytoobtainanisometry(orsomethingveryclosetoanisometry).Incharacteristiczero,theuniversalextens

8、ionofanellip

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。